



### DATA GAPS RELATED TO THERMODYNAMICS IDENTIFIED IN EURAD-FUTURE PROJECT

EURAD2 – annual event 1, Bologna

Norbert Maes – SCK CEN



Co-funded by the European Union under Grant Agreement n° 101166718

Date



#### FUNDAMENTAL UNDERSTANDING OF RADIONUCLIDE RETENTION Pillars of RN transport and retention Plutonium(III) nona-aquo Argillaceous WP 3.0 REDOX Rocks Fe metal Magnetite Chukanovite Fe<sup>II</sup> phyllosilicate Ca-doped siderite WP 2.3 SORPTION Clay **REVERSIBILITY** Crystalline Rocks Th(IV) ROCK FRAGMENT (part of fault gouge) WP MOBILITY: 2.1 Clay & 2.2 Crystalline Profile of electrical potential EDL Clay Free water Pore EDL

Negatively charged clay surface

## AIM OF FUTURE: DELIVER SOLID SCIENTIFIC KNOWLEDGE ON RN MOBILITY TO SUPPORT SAFETY ASSESSMENT

| ☐ Obtain mechanistic understanding of radionuclide mobility and retention w.r.t.                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ EDL effects: anion exclusion, enhanced flux in EDL for cations                                                                                                 |
| microstructural effects (water saturation, pore heterogeneity and connectivity, grain boundaries)                                                                |
| Chemical aspects of pore water composition (pH, IS, competing elements)                                                                                          |
| ☐ Interplay of transport regime and chemical boundary conditions in fractured crystalline rocks                                                                  |
| ☐ Understand the nature of the long-term retention mechanisms i.e. adsorption reversibility                                                                      |
| ☐ Adsorption versus incorporation (surface precipitation, neo-formation), competitive adsorption, solid solutions                                                |
| Quantify/Characterize redox controlled retention and mobility processes                                                                                          |
| ☐ Interaction between redox—sensitive radionuclides and relevant Fe-bearing minerals (clays & oxides)                                                            |
| Structural constraints on availability of redox active elements in the system: e.g. total Fe content, structural location and molecular scale surface speciation |

#### **HOW IS THIS ACHIEVED?**

#### **☐** Systems Studied:

- Model systems: Pure clay minerals (Ill, MoMo,...), fracture filling materials (calcite, chlorite,...) & Fe-bearing clays&minerals (Notronite, magnetite, green rust,...)
- ☐ Natural systems: argillaceous (COx; OPA, Boda) and crystalline rocks (Bukov, Onkalo)
- Weakly, moderately and strongly sorbing + redox sensitive radionuclides (I, Se, Ra, Ba, Co, Ni, Zn, Tc, Re, U, Np, Pu, Am,...)

#### **□** Experiments

- ☐ Sorption experiments (disperse/compacted) under highly controlled conditions
- ☐ Transport experiments (different scales) under highly controlled conditions
- ☐ (Cutting edge) Spectroscopy (Mossbauer, XPS, synchrotron-XAS techniques, ATR-FTIR, LA-ICP-MS, TOF-SIMS/rL-SNMS, AMS, 14C-autoradiography, PET)



#### THERMODYNAMIC DATA IN FUTURE – ROLE AND IMPACT?

- □ No explicit focus on gathering or validating thermodynamic data focus on process understanding
  - Experimental conditions (often) tailored towards this goal: choice of RN, material, availability of (thermodynamic) data...
- □ *Implicit use* of thermodynamic data
  - ☐ Design of experiments e.g. speciation calculations, predictive calculations, controlling conditions,...
  - ☐ Modelling of sorption(interaction) experiments
  - ☐ Reactive transport modelling of transport experiments
  - ☐ Interpretation of spectroscopic data
  - → high quality thermodynamic data were key to the success of the FUTURE project



#### **BIRD EYE CONCLUSIONS AND OUTCOME OF THE PROJECT**

| □ Validity of <i>bottom up</i> approach for sorption is broadly confirmed but not always straigthforward as all underlying mechanisms and parameters must be known:                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ☐ From dispersed systems to compacted systems -> straightforward if system chemistry is well known ☐ From single mineral to complex systems -> straightforward ☐ From single RN to RN mix (competition) -> remains challenging and needs further studies |
| □ New/missing sorption data became available and included into sorption models                                                                                                                                                                           |
| □ Sorption reversibility should not be taken for granted often some irreversibility is observed but mechanisms are difficult to unravel                                                                                                                  |
| ☐ Mechanistic sorption models are applicable in the interpretation of transport experiments (but PW chemistry should be accounted for)                                                                                                                   |
| ☐ Mechanistic understanding of anion exclusion and surface diffusion has matured                                                                                                                                                                         |
| □ Development of spectroscopic techniques helped to:                                                                                                                                                                                                     |
| Push detection limits for concentration measurements by several orders of magnitude                                                                                                                                                                      |
| ☐ Provide detailed zoom into surface properties                                                                                                                                                                                                          |
| $\Box$ Revealed quantitative information about the RN speciation in aqueous phase, in solids and at interprete $\Box$                                                                                                                                    |

# GAINED UNDERSTANDING (DATA AND MECHANISMS) HELPS TO IMPROVE MODEL DESCRIPTIONS DESCRIBING RADIONUCLIDE TRANSPORT AT DIFFERENT SCALES SUITABLE FOR SA PURPOSES

☐ Extending datasets for sorption and diffusion on rocks and compacted minerals → Support for the selection and scientific justification of (Kd, De...) values in the SA ☐ Clear evidence for enhanced cation diffusion in clay systems (surface diffusion) → Must be considered in generalized SA □ New data for anions transport and anion exclusion: divalent anions, particle orientation, partial saturation, .... → current SA model can be refined ☐ Significant improvement in understanding the mechanisms of redox processes in which iron bearing phases and clays can promote sorption-reduction reactions Redox controlled uptake in the vicinity of wastes by corrosion products should be considered in SA **Effect** of redox-mediated processes on radionuclide mobility needs further investigations. □ Limitations of current retention/diffusion models (leading to overestimation and underestimation) are clearly identified:

— Competition, slow kinetic process, sorption onto non-clays minerals, solid solution formations

eurad 2

#### **KNOWLEDGE GAPS RELATED TO THERMODYNAMICS**

- ☐ Kinetic data
  - ☐ Redox processes
  - ☐ Retention mechanisms other than reversible sorption
- **□** Completeness of thermodynamic databases
  - ☐ Scarcity of data for some elements (experimental difficulties of all kinds)
  - ☐ Incomplete data for some elements
  - ☐ Internal consistency
- ☐ Thermodynamics in confined systems
- ☐ Solid solution thermodynamic aspects

