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HERMES TASK 4

• Surrogate models (of individual and coupled phenomena) 

• Task leading: N. Prasianakis (PSI, Switzerland)/ J. Brezina (TUL, Czech Rep.)

• Aim: 
Create surrogate models of individual processes and of several coupled processes. Surrogate 
models or proxy models provide a significant acceleration to the simulation codes.  The topics 
which will be addressed are relevant to Chemistry, Gas-Mass-Heat transport and Mechanics 
(THMC). In the core of this task is the application, benchmarking and implementation of 
machine learning methods and codes which go beyond the state of the art. 

Task 4.1: Acceleration of computations for individual processes and phenomena
Task 4.2: Surrogate models for coupled processes and multiphysics 



TASK 4: SURROGATE MODELS 

3

• 15 Participants from 10 countries across Europe. 

Methods: Machine Learning and reduced order methods
• Deep Learning Neural Networks

(Forward, cascade forward, convolutional, recurrent, graph, liquid)
• Gaussian Processes
• Bayesian Regression
• Reduced order methods (ROM)
• Decision Trees (XGBOOST, DecTREE etc) 
• Physics Informed Machine Learning (e.g. PINNS)
• ML based PDE modelling   

Explore surrogates of subsystems, or of physical processes
Chemistry surrogates
Mechanics surrogates (including calculation of stresses from images)
Hydraulics / Flow surrogates (including calculation of transport from images)
Waste package level surrogates



NEED FOR RT, MULTISCALE MULTIPHYSICS AND 
DIGITAL TWINS 

Predictive capability

Design optimization

Numerical Diagnostics

Process Understanding

Digital Twin

Digital Twin is a modelling based tool of increased realism. For geochemical applications, it should cover
several spatial and temporal scales, as well as all major underlying mechanisms.  



Algorithms HPC

MULTISCALE MULTIPHYSICS, OPTIMIZATION AND DIGITAL TWINS



MACHINE LEARNING FOR ACCELERATING CODES: 
CHEMICAL REACTIONS
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• In reactive transport simulation a transport and a chemical solver are usually coupled. 

• The thermodynamic/chemical calculations consume > 99.9% of the total simulation time. 

• Chemistry based machine learning for acceleration of the geochemistry has been showcased in several works. 

EURAD-DONUT

Data Management
FAIR principles



GEOCHEMISTRY AND MACHINE LEARNING BENCHMARK WITHIN EURAD

Machine Learning model

Metrics of accuracy

Speed-up

Prasianakis, N. I., Laloy, E., Jacques, D., Meeussen, J. C. L., Miron, G. D., Kulik, D. A., De Lucia, M., ...Churakov, S. V., Kolditz, O. & 
Claret, F. (2025). Geochemistry and machine learning: methods and benchmarking. Environmental Earth Sciences, 84(5), 121.



GEOML-RT : REACTIVE TRANSPORT BENCHMARK
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Several participants across EURAD-2 benchmarking reactive transport codes with ML-accelerated geochemistry 
 
• Uranium sorption and transport (GFZ)
• Cement degradation (SCK – PSI)
• Iron corrosion benchmark (UDC, J. Samper et al.)

• Processes at the interfaces: Cement-Clay (Amphos, A. Idiart et al.)

50 000 years of simulation, 𝚫𝐭 = 𝟎. 𝟐𝐲



REACTIVE TRANSPORT CORROSION MODEL

• Following steps for model complexity:

• More minerals under equilibrium

• More aqueous complexation

• Cation exchange 

Aqueous complexes Log K

CaCO3(aq) + H+  Ca2+ + HCO3
– 7.1100

CaHCO3
+  Ca2+ + HCO3

– -1.100

CaOH+ + H+  Ca2+ + H2O 12.78

CO2(aq) + H2O  H+ + HCO3
– -6.350

CO3
2- + H+  HCO3

– 10.33

KOH(aq) +  H+  K+ + H2O 14.460

MgCO3(aq)  Mg2+ + CO3
2- -2.980

MgHCO3
+  Mg2+ + HCO3

– -1.040

MgOH+ + H+  Mg2+ + H2O 11.680

NaHCO3(aq)  Na+ + HCO3
– 0.250

NaCO3
-  Na+ + CO3

2- -1.270

NaOH(aq) + H+  Na+ + H2O 14.750

OH- + H+  H2O 14.000

Fe3+ + 0.5H2O  H+ + 0.25O2 + Fe2+ -8.485

FeHCO3
+

  Fe2++ HCO3
– -1.440

FeCO3 (aq)  Fe2++ CO3
2- 4.640

FeCl+  Fe2++ Cl- -0.140

FeCl2+ + 0.5H2O   Fe2+ + Cl- + H+ + 0.25O2(aq) -9.885

FeOH++ H+  Fe2++ H2O 9.500

FeOH2+  Fe2++ 0.5H2O + 0.25O2(aq) -6.295

Fe(OH)2(aq) + 2H+  Fe2++ 2H2O 20.60

Fe(OH)3(aq) + 2H+  Fe2+ + 2.5H2O + 0.25O2(aq) 4.075

Fe(OH)4
- + 3H+  Fe2+ + 3.5H2O + 0.25O2(aq) 13.115

Fe(OH)2
+ + H+  Fe2+ + 1.5H2O + 0.25O2(aq) -2.815

Fe2(OH)2
4+ + 2H+ 2Fe2+ + H2O + 0.5O2(aq) -14.020

H2(aq) + 0.5O2  H2O 46.07

Minerals LogK

Calcite + H+  Ca2+ + HCO3
– 1.850

Magnetite + 6H+  3Fe2+ + 0.5O2 (aq) + 3H2O -6.560

Goethite + 2H+  Fe2+ + 1.5H2O + 0.25O2 (aq) -8.090

Quartz   H4SiO4 -3.7400

Cation exchange KNa-cation

Na+ + X-K  K+ + X-Na 0.138

Na+ + 0.5 X2-Ca  0.5 Ca2+ + X-Na 0.2924

Na+ + 0.5 X2-Mg  0.5 Mg2+ + X-Na 0.2881

Na+ + 0.5 X2-Fe  0.5 Fe2+ + X-Na 0.5

J. Samper, A. Mon



REACTIVE TRANSPORT CORROSION MODEL

• Exploring a new range of training data

Small goethite and magnetite 
precipitation is better 
represented

- Small Fe 
concentrations are 
better represented
- pH and Eh gaps 
remain



ACCELERATION OF LB ALGORITHM FOR PORE LEVEL SIMULATIONS

• Cement – clay interface (CSH precipitation in Clays)

• Adaptive time step speed-up
3-4 orders of magnitude

• Combined ML-chemistry + adaptive timestep
Speed-up of 6 orders of magnitude.   

M. Baur, S. V. Churakov, N.I. Prasianakis (submitted); Synergy with SNF PRINCE project



AI FOR THE ACCELERATION OF THE MODELLING WORKFLOW: 
LITHOLOGY CLASSIFICATION AND MINERAL CONTENT REGRESSION

Boiger R., Churakov S.V., Ballester Llagaria I., Kosakowski G., Wüst R., Prasianakis N.I. (2024) Direct mineral content prediction from drill 
core images via transfer learning. Swiss Journal of Geosciences, 117(1), 1-26. https://doi.org/10.1186/s00015-024-00458-3

https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3
https://doi.org/10.1186/s00015-024-00458-3


DRILL BOREHOLE -> AI ANALYSIS -> GEOLOGICAL MODEL
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High resolution model result
14% relative error to XRD
➔ Same level of accuracy with

state of the art statistical models

Example image of geological model from: Papafotiou et al. , Energies 2022, 15, 6121. https://doi.org/10.3390/en15176121

Can assist the high resolution rapid
construction of geological model

Q: How to map a few borehole data to the reservoir scale domain ?

https://doi.org/10.3390/en15176121


DEVELOPMENT OF PROCESS-BASED ML TOOLBOX FOR ASSISTING 
3D EXPERIMENTS IN PARTIALLY SATURATED CLAY

Seite 14 Y. Yang
R. Santoso
J. Poonoosamy

1. Aims: 
• Developing a process-based machine learning toolbox/framework 

to assist real-time 3D experiments and understanding reactive flow
2. Modeling approach:

• Saturation-conditioned U-Net for mapping gas phase distribution 
and dimensionality reduction

• Non-intrusive reduced basis method for mapping to states, such 
as concentration

3. Numerical methods:
• Lattice Boltzmann method for generating partially saturated 

condition and states
4. Vision:

• Enabling imaging fast & and identification of events e.g. 
mineralization at gas/liquid interfaces or gas bubble nucleation

• Enabling efficient calibration of nucleation and geochemical 
parameters, as well as deriving effective properties, for 
radionuclides transport in partially saturated clay

Neural
Network

Non-intrusive RB

Encoder U-Net

time

Toolbox

Santoso et al. (in prep) & codes will be made 
publicly available



NUMERICAL STUDY OF HYDROMECHANICAL RESPONSE USING PHYSICS-
INFORMED NEURAL NETWORKS (PINN)

FEM PINN Points on y-axis Points on x-axis

Result：Pressure distribution

FEM PINN

Result：Displacement distribution

Points on y-axis Points on x-axis

Background

Methodology

Rong-Fei LIU, Jian-Fu SHAO

Fig. Mechanical and hydraulic deconfinement curves



AI/ML DEVELOPED IS FULLY BASED ON PHYSICS AND THERMODYNAMICS

• Training Data: solid Thermodynamic data or high 
fidelity physical simulations

• Model architecture and weights is available

• Possibility to run statistical tests to understand 
model dynamics  

• Measures of accuracy / comparison to experiments

• AI applied in domain of expertise

• Understand the limitations 

Validated and reliable
Results justified 
By physics and thermodynamics
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• Advancements in AI/ML supported reactive transport are on-going within EURAD 2
   => Mostly at the level of individual systems and simple process coupling. 

• Integration of codes and unifying workflows will be needed to increase the complexity and  
realism of the simulations -> Digital Twin

• AI/ML can support the modelling and accelerate calculations 
=> suitable for sensitivity, optimization and inverse modelling studies

• Advancement of coupled algorithms is still needed to provide the fundament for AI/ML

SUMMARY
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THANK YOU
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