

11 SEPTEMBER 2025

Accounting for Climate in the Belgian Surface Disposal Programme

Frank Lemy Diederik Jacques (SCK CEN) Elise Vermariën

Disposal Site

How is climate (change) addressed?

Design

- Design requirement "Withstand design climate loads"
- Design calculations (flooding, settlements,...)

Safety assessment

- Scenarios
- Near-field models
- Hydrogeological models
- Biosphere models

How is climate (change) addressed?

Design

- Design requirement "Withstand design climate loads"
- Design calculations (flooding, settlements,...)

Safety assessment

- Scenarios
- Near-field models
- Hydrogeological models
- Biosphere models

Engineered Barriers

Up to ~50 years

- Trolley:
 - Protects monoliths against rain
 - Extreme temperatures
 - Wind load
- Steel roof
 - Snow, wind & tornado loads
 - Temperature differences

From ~50 to ~ 1000 years

- Impervious top slab has a key role in limiting water infiltration towards the modules
 - Water percolating through the earth cover slowly resaturates underlying concrete components
- **Carbonation** = main degradation mechanism of concrete components
 - Virtually halted (very low rates) in presence of the earth cover (buried conditions)

From ~50 to ~ 1000 years

- Safety functions of earth cover:
 - Protect concrete barriers
 - Limit water infiltration
 - Isolate the waste
- Controls and repairs (if needed) up to 350 years
- Design requirement "Withstand design climate loads" applies to the earth cover

From ~50 to ~ 1000 years

- Earth cover designed to:
 - Withstand erosion
 - Climate change taken into account in the design (e.g. higher rainfall intensity)
 - **Avoid drying out of:**
 - Biological layer
 - Infiltration (clay) barrier
- Uncertainty regarding future climate treated in the SA through:
 - Alternative scenarios considering accelerated / extreme erosion

high resistance to erosion (and bioturbation)

sand

After ~ 1000 years

- Earth cover degradation → buried conditions no longer guaranteed
 - Enhanced carbonation rates
 - Exposure to freeze-thaw cycles
- Gradual development of **fractures** in impervious top slab, modules and monoliths
 - Preferential pathways for water flow and radionuclide transport

redistributing layer

inspection room backfill

concrete backfill mortar waste form

sand-cement

After ~ 1000 years

Near-field models:

- Uncertainty regarding future climate is treated by choosing a conservative infiltration rate (boundary condition)
- No "bathtub effect" by design
- Assumption that concrete barriers are already degraded (fractures & carbonation) when water infiltration starts

 $t > t_b$ stylised

extreme

 $t < t_b$

position where the flux out of the system is captured in case of a shortcut towards the aquifer in presence of a borehole

Timeframes, repository configurations, safety functions & uncertainties determine how climate is addressed!

