

WP 18 DITUSC: DEVELOPMENT AND IMPROVEMENT OF THERMODYNAMIC UNDERSTANDING FOR USE IN NUCLEAR WASTE DISPOSAL SAFETY CASE

S. Brassinnes (NIRAS-ONDRAF)

Co-funded by the European Union under Grant Agreement n° 101166718

WP18 DITUSC - OBJECTIVE

Assessment of the current thermodynamic understanding in support of the Safety Case for radioactive waste disposal, with particular emphasis on a transversal understanding to allow identification of possible future improvements in knowledge and use.

- **Complementarity/synergies** with on-going TDB projects, e.g., NEA-TDB, ThermoChimie, THEREDA, PSI/Nagra TDB, JAEA-TDB, WIPP TDB, Thermoddem, Prodata etc;
- In close collaboration with the End-User Group, other EURAD-2 WPs and key actors of previous EC Projects, identify, critically assess and prioritize data gaps of relevance to the Safety Case;
- If possible, definition of **technical approaches** and possible scientific strategies to fill in the identified thermodynamic data gaps;
- 2 main deliverables:
 - **Green Paper** framing the scope of interactions and take position on several topics relevant to use of thermodynamics (*September 2025*);
 - White paper summarizing the outcomes of the data gaps analysis and subsequent prioritization (*January 2026*).

DITUSC WP BREAKDOWN

Task	Task leaders
Task 1 - Management / Coordination of the WP	ONDRAF/NIRAS & KIT
Task 2 - Knowledge Management	JFZ
Task 3 - Thermodynamics: data gaps, solid-solutions, interplay with kinetics, and Safety Case	A21 & PSI

DITUSC TECHNICAL SCOPE

Thermodynamic data gaps

- Chemical elements (relevant elements, RNs, chemotoxics)
- Organic compounds
- Perturbed systems
 - High saline systems
 - High temperature

Thermodynamics of solid-solutions

- Cement phases
- Zeolites
- Carbonates/sulphates

Interplay of thermodynamics and kinetics

- Solid transformations over time
- Redox disequilibrium for key inorganic reactions

Thermodynamics and Safety Case

• End-User needs relevant to the Safety Case

→ Extended to any other relevant topics based on feedback from TDB users and End Users (workshops, interaction meetings and DITUSC survey)

Example: Porous medium

System compenents/conditions/properties

- Material-forming solid phases
- Pore-water composition
- Eh
- pH
- Temperature
- (Pressure)

ELEMENTAL DISTRIBUTION

Speciation Colloids Organic complexation Sorption **Precipitation/**Dissolution

M=RN, CT, other element[PW/ barriers/waste/...]

λs for chemical species (aqueous/solid):

- Log₁₀K°
- ∆_rG°_m
- ∆_rH°_m
- $-\Delta_r S_m^{\circ}$
- Δ_fG°_m
- Δ_fH°_m
- S°_m
- V°
- C°p,m

λs for ion interaction models:

- **■** ε(j, k)
- Pitzer parameters

■ Geochemical modelling→ Transport parameters

TDBS – PARAMETERS (λs)

MAIN TYPE GAPS

(From technical discussions, DITUSC survey and direct interactions with the End-User Group and other EURAD-2 WPs)

- Stability constants of system components constitutive phases (e.g., new generation of cement-based materials)
- Data for inorganic speciation and related solubility of a large set of elements (e.g., coffinite solubility, Cu-Cl complexes)
- Stability constants of relevant organics and complexation constants with relevant elements (e.g., Nb-ISA complexes in alkaline environment)
- Existence of ternary complexes and related datasets (e.g., U(IV)-OH-SiO₄)
- Ion interaction model parameters for high saline systems (e.g., sulfate/nitrate perturbations)
- Solid-solutions parameters and possible uptake of RNs (e.g., anion uptake in cement phases)
- Solid phase transformation over time (e.g., time dependency of solubility products)
- Redox disequilibrium (e.g., inorganic redox reactions frequently modelled using kinetics that may influence the redox evolution of repositories)

2ND OPEN WORKSHOP

DEVELOPMENT AND IMPROVEMENT OF THERMODYNAMIC UNDERSTANDING FOR USE IN NUCLEAR WASTE DISPOSAL SAFETY CASE

Thank you for your attention!

Co-funded by the European Union under Grant Agreement n° 101166718

