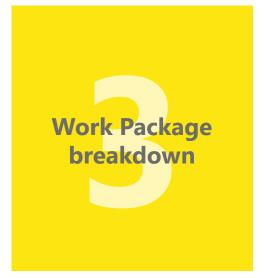


DEVELOPMENT AND IMPROVEMENT OF THERMODYNAMIC UNDERSTANDING FOR USE IN NUCLEAR WASTE DISPOSAL SAFETY CASE

<u>Stéphane Brassinnes</u> (ONDRAF/NIRAS), Xavier Gaona (KIT-INE), Jenna Poonoosamy (JFZ), Eli Colas (Amphos21) and George-Dan Miron (PSI)





OBJECTIVE AND TARGETS

- To assess current thermodynamic understanding in support of the Radioactive Waste Disposal Safety Case, with special focus given to a transversal understanding
 - **State-of-the-Art report** (SOTA) documenting the scientific basis supporting the use of thermodynamic approaches in the safety case (SC) and how these are implemented in safety analysis.
 - Complementarity / synergies with **on-going thermodynamic projects**, e.g., NEA-TDB, ThermoChimie, THEREDA, PSI/Nagra TDB, JAEA-TDB, etc.
 - In close collaboration with the End User Group, identify, critically assess and prioritize data gaps of relevance to the SC
 - Definition of technical approaches and possible scientific strategies to fill in the identified gaps.
 - Collaborative work and scientific awareness will be organized through surveys, exchange meetings, open workshops and training courses
 - White paper summarizing the outcomes of the integral assessment and promoting new valuable R&D actions to further support/improve the use of thermodynamics in the SC.

FRAMEWORK

Type: Strategic Study

Actors:

- EU Partners: 12
- Non-EU Associated Partners: 6
- End Users: 9 (+2) still under discussion
- Duration: 24 months
- Resources: c.a. 60 PME in total

sck cen

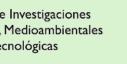
Exploring a better tomorrow

cea

Géosciences pour une Terre durable

PARTNERS

ANDRA

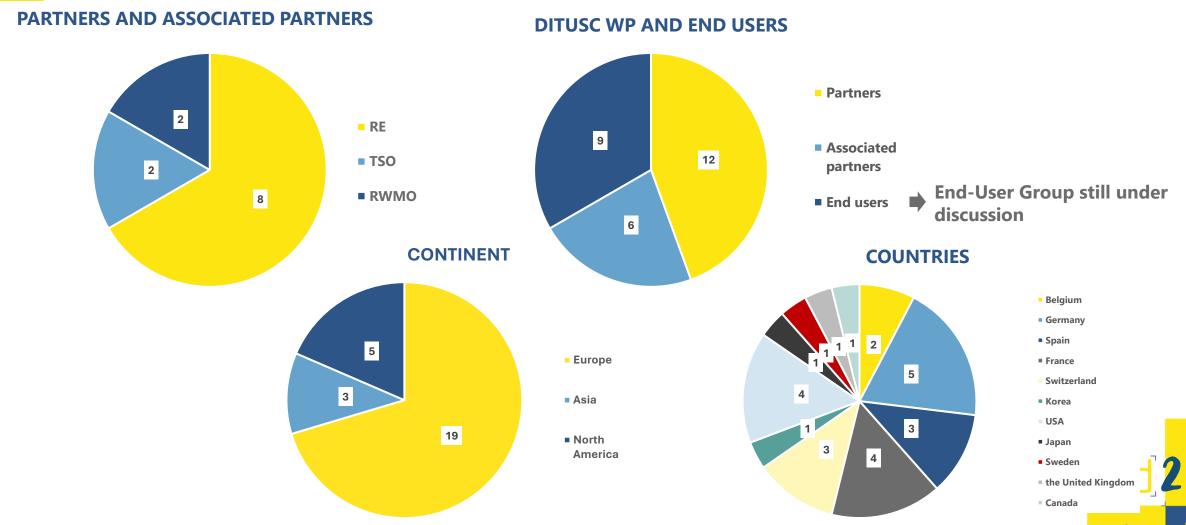

END-USER GROUP

(to be confirmed)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

global research for safety

ASSOCIATED PARTNERS



24.10.2024

DITUSC WP BREAKDOWN

- Task 1 Management / Coordination of the WP ONDRAF/NIRAS & KIT
 - T1.1. S/T coordination
 - T1.2. Dissemination / outreach / impact
 - T1.3. Quality control
- Task 2 Knowledge Management JFZ
 - T2.1. Knowledge capture
 - T2.2. Knowledge transfer
- Task 3 Thermodynamics: data gaps, solid-solutions, interlink with kinetics, and Safety Case A21 & PSI
 - T3.1. Thermodynamic data gaps for RNs and organics
 - T3.2. Perturbed systems (high saline systems and high temperature)
 - T3.3. Thermodynamics of solid-solutions
 - T3.4. Interplay of thermodynamics and kinetics
 - T3.5. Thermodynamics and Safety Case

T1: MANAGEMENT / COORDINATION OF THE WP

- T1.1. S/T coordination
- T1.2. Dissemination / outreach / impact
- T1.3. Quality control

Deliverable (1):

D1.1: outcome/impacts report to Member States and End Users → analysis and integration of the WP results

T2: KNOWLEDGE MANAGEMENT

- **T2.1. Knowledge capture**
- **T2.2.** Knowledge transfer

T2.1: KNOWLEDGE CAPTURE

Capture all relevant information to the work package

- existing knowledge and use in the Safety Case (prior to EURAD 2)
- critical evaluation
- possible ways for improvement and prioritization

Deliverables (3):

- D2.1. State-of-the-Art report
- D2.3. White paper (first full draft)
- D2.4. White paper (final)

T2.1: KNOWLEDGE TRANSFER

Interactions with other Eurad 2 Work Packages

- WP8 Release of safety relevant radionuclides from spent nuclear fuel under deep disposal conditions (SAREC)
- WP9 Innovative and new container/canister materials under disposal fields conditions: manufacturing feasibility and improved durability (INCOMAND)
- WP12 Radionuclide mobility under perturbed conditions (RAMPEC)
- WP14 Near-surface disposal optimisation based on knowledge and understanding (SUDOKU)
- WP16 High fidelity numerical simulations of strongly coupled processes for Repository systems and design optimisation with physical models and machine learning (HERMES)

Interactions with key actors of **previous EC projects**:

e.g. FUNMIG, RECOSY, SKIN, CEBAMA, FUTURE, ...

Interactions with on-going thermochemical database projects:

- NEA-TDB
- ThermoChimie
- Thereda
- Nagra/PSI TDB
- JAEA-TDB
- Thermodderm
- CEMDATA...

T2.1: KNOWLEDGE TRANSFER

3 **SPECIAL WORKSHOPS**: open to any interested parties

- November 2024 (Spain)
- (i) Exhange with on-going Thermochemical database programs
- (ii) Introduction to DITUSC Survey
 - AMPHOS 21 an RSK company

- > Summer-Fall 2025 (France)
- (i) Thermodynamics and kinetics
- (ii) Thermodynamics and OM
- (iii) Thermodynamics of solidsolutions
- (iv) Feedback survey

- Spring 2026 (Belgium)
- (i) Review of the achievements
- (ii) Identification and prioritization of knowledge gaps and current limitations of use in the Safety Case

TRAINING COURSE: Education and increase awareness of students and young professional on the use of Thermodynamics in the Safety Case

→ Coupled to NEA-TDB annual course (in conjunction to the next Migration conference - September 2025)

FIRST OPEN WORKSHOP (14&15 NOVEMBER 2025 – BARCELONA, SPAIN)

Content:

- Introduction to EURAD-2 DITUSC Strategic Study
- Presentations on on-going TDB projects:
 - NEA-TDB

- CEMDATA
- Thermoddem

THEREDA

- JAEA-TDB
 Prodata

- ThermoChimie
- WIPP TDB
- PSI/Nagra TDB
- Focus on TDB status / Systems covered / Priorities / Future plans
- **Data gaps:** identification and methodologies to cover them
- Introduction to DITUSC Survey

T3: THERMODYNAMICS: DATA GAPS, SOLID-SOLUTIONS, INTERLINK WITH KINETICS, AND SAFETY CASE

- T3.1. Thermodynamic data gaps for RNs and organics
- T3.2. Perturbed systems (high saline systems and high temperature)
- **T3.3. Thermodynamics of solid-solutions**
- T3.4. Interplay of thermodynamics and kinetics
- **T3.5. Thermodynamics and Safety Case**

T3.1: THERMODYNAMIC DATA GAPS FOR RN AND ORGANICS

Focused on the identification of data gaps related to the use of thermodynamic approaches

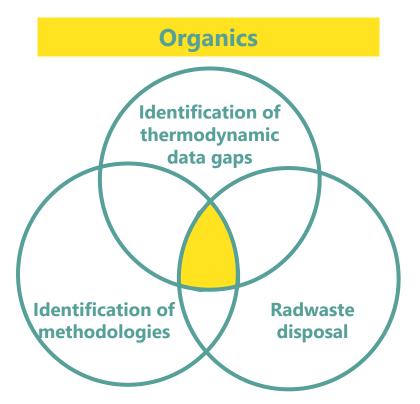
▶ Identification of data gaps **▶** Identification of the methodologies **▶** Specific relevant example

Radionuclides **Identification of** thermodynamic data gaps **Radwaste Identification of** methodologies disposal

- Exchanges with on-going thermodynamic database projects (Specific workshop)
- Comprehensive surveys
- Literature review
- Case Studies:
 - Use of Linear Free Energy Relationships (LFERs) to cover data gaps
 - Ln(III) and An(III) analogies
 - Interaction between multicharged anionic species of actinides with alkaline earths

- SAREC
- INCOMAND
- **RAMPEC**

- SUDOKU
- HERMES



3.1: THERMODYNAMIC DATA GAPS FOR RN AND ORGANICS

Focused on the identification of data gaps related to the use of thermodynamic approaches

▶ Identification of data gaps **▶** Identification of the methodologies **▶** Specific relevant example

- Synergies with on-going thermodynamic-related projects (Specific workshop in November)
- Specific workshop for high molecular weight organics
- Comprehensive surveys
- Literature review
- Case Studies:
 - Applicability of group additivity schemes
 - Interaction of An(III) with hydrosoluble degradation products
 - Thermal degradation of solid organic matter

T3.2: PERTURBED SYSTEMS

Analyzing the thermodynamic description of relevant systems under perturbed conditions.

Explore strategies to close existing data gaps by estimation methods

HIGHLY SALINE SYSTEMS

(Nitrate, chloride and sulfate plumes)

- Analyzing and comparing ion interaction theories.
 - Identify missing data
 - Assess what is achievable today
- Definition of the relevant conditions
- Identification of thermodynamic data gaps for relevant radionuclides and cement phases
- Evaluation of existing approaches to estimate missing ion interaction coefficients.

TEMPERATURE

(Up to 200 °C)

- Identification of missing data for geochemical modelling (including cement and high saline conditions)
- Identification of systems for which experimental data at elevated T are reported but lack adequate model.
- Description and benchmark of various estimation methods for transition metals.

!!!! Avoiding redundances with NEA TDB SOTA reports on high temperatures & high ionic strengths systems

- SAREC
- INCOMAND
- **RAMPEC**

- SUDOKU
- HERMES

T3.3: THERMODYNAMICS OF SOLID-SOLUTIONS

Understanding the benefits of using solid solution (SS) models

Approaches and guidelines to include SS in the Safety Case Identify potential pitfalls

Cement hydrates

- Focus on relevant cases concerning C-S-H, LDH/Afm solid solutions
- **Emphasis on end-members incorporating anionic species and radionuclides**

Zeolites

- Use of SS models in zeolites
 - Evolution of cementitious materials
 - Cement/clay interaction
 - Uptake of radionuclides

Sulfates/Carbonates

- Role of sulphates and carbonates in retention of safety relevant radionuclides
 - Ra, Tc, Se, I...

- **SAREC**
- **INCOMAND**
- **RAMPEC**

- **SUDOKU**
- **HERMES**

T3.4: INTERPLAY OF THERMODYNAMICS AND KINETICS

Assess the interplay of thermodynamics and kinetics

Solid phase transformation

- M(II), M(III) and M(IV)
- Hydroxides, hydrous oxides
 - Literature search
 - Exploring methods and techniques of solid phase characterization
 - General kinetic interpretation of solubility equations
 - Collection of reaction constants

Redox phenomena

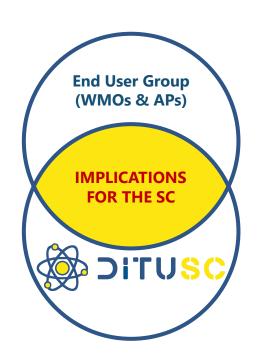
- Inorganic redox reactions frequently modelled using kinetics
 - analysis of the source of the data
 - identification of limitations
 - improvement possibilities

Applications

- <u>Example: Spent fuel dissolution under reducing conditions</u>
 - comparison between solubility controlled and dissolution controlled by the forward/backward rate
 - evaluation of the impact of the stoichiometry

- SAREC
- INCOMAND
- RAMPEC

- SUDOKU
- HERMES



T3.5: THERMODYNAMIC AND SAFETY CASE

Documenting how thermodynamic approaches are currently implemented in the Safety Case (SC)

Assessing possible improvements in the use of thermodynamic models in Safety Analysis and

Performance Assessment

- Close interactions with End Users from WMOs & Associated Partners involved in the Safety Case
 - Comprehensive survey
 - Closure Workshop on output of DITUSC
- Thermochemical database and the Safety Case
 - International TDBs and their role in the SC
 - Evaluation of the technical achievements of Sub-task 3.1 to 3.4
 - Identification and prioritization of remaining data/knowledge gaps
- Use of Thermodynamic approaches in the Safety Case
 - Summary of the use of Thermodynamic approaches in SC
 - Evaluation of the possible ways of improvement
 - Prioritization of the remaining knowledge gaps

TIMELINE

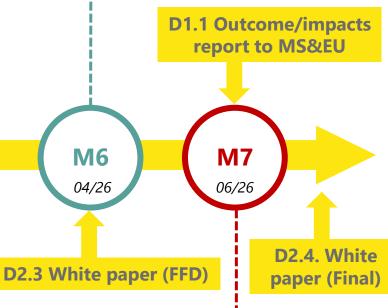
M1

11/24

Distribution of **Documentation of** Survey **Training Training course** D2.1 **SOTA**

M3

09/25


Report

M2

12/24

-DITUSC closure meeting -DITUSC Final Workshop

(i) Review achievements (ii) Identification and prioritization of knowledge gaps and current limitations of use in SC.

-DITUSC Kick-Off meeting -Special Workshop

(i) Exhange with TDB programs (ii) introduction to Survey

-DITUSC annual meeting

-Special Workshop

(i) Thermodynamics and kinetics; (ii) Thermodynamics and OM; (iii) Thermodynamics of solid-solutions; (iv) Feedback survey

Summary of activities within Sub-tasks 3.1 to 3.5.

M4

10/25

D2.2Documentation of

exchange with Eurad

Community

M5

11/25

Documentation of

exchange with End Users