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a b s t r a c t 

Machine learning (ML)-assisted modelling of deep geological repositories (DGR) is of emerging interest 

and can help to improve the safe and reliable operation of DGRs as well as the public acceptance. Here, 

a concept of ML-assisted physical-based 3D heat transport model for the Full-scale Emplacement (FE) 

experiment performed at Mont Terri Underground Laboratory (URL), is presented. The FE experiment is 

a 1:1 scale mock-up of a DGR tunnel where heaters simulate emplaced high level waste. ML is applied 

to sparse sensor data of the water saturation degree in the granulated bentonite material (GBM) yielding 

a physically and neural network (NN) based surrogate model for the thermal conductivity of the GBM, 

needed to calculate the temperature evolution in the FE tunnel near-field. In order to investigate the 

dominant parameters influencing the temperature evolution in the vicinity of the FE experiment, the 

results of 32 orthogonal test cases have been analysed systematically. 

For the ML predicted water saturation degree, three NN methods are tested. The Elman NN (with a 

Pearson’s r coefficient of 0.9911, a mean squared error (MSE) of 4.62, and mean absolute error (MAE) 

of 1.44) operates better than the back propagation (BP) and cascade BP (CBP) NN methods. Results of 

ML-assisted heat transport calculations are validated with the large experimental dataset of 137 × 10 

temperature sensor data points (errors range within 7%). Parameters uncertainty ranges of ±10% for ther- 

mal conductivities of the GBM λGBM 

and bentonite block λblock are analysed and bands of temperature 

uncertainties are compared with temperature sensor data, which allows sensor data assessment includ- 

ing identification of the faulty sensor data. The ML-assisted physical modelling framework can be applied 

to future DGRs. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multi-physics and multiscale processes are typically occurring 

t various subsurface systems including geothermal energy ex- 

loitation [ 1 , 2 ], carbon dioxide sequestration [ 3 , 4 ] and radioactive

aste disposal [ 5 , 6 ]. Especially, the safe, economical, and reliable 

ong-term operation of the subsurface systems like the deep geo- 

ogical repository (DGR) is a vital issue for permanently isolating 

he spent fuel/high-level radioactive waste (SF/HLW) from the hu- 

an environment [7] . SF/HLW produces decay heat for a long time 

fter disposal and the impact of thermal loads on the long-term 

afety functions of the repository is a key issue [8] . To this end,

he Full-scale Emplacement (FE) experiment at the Mont Terri Un- 

erground Laboratory (URL) has been set up to obtain a better un- 

erstanding of the coupled processes at repository scale including 

heir 3D (three-dimensional) modelling. Heat transport is the dom- 
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nating process within the initial storage phase of SF/HLW, how- 

ver, it is influenced by coupled processes like water resaturation, 

entonite swelling, and other near-field material properties evolv- 

ng with time. All these parameter evolutions have to be taken into 

ccount for the modelling of the temperature evolution [9] . 

.1. Heat transport modelling 

Various coupled modelling approaches of the DGR near- 

eld include the modelling of the temperature evolution, 

.e., the thermal-hydraulic (TH), thermal-hydraulic-chemical 

THC), thermal-hydraulic-mechanical (THM), thermal-hydraulic- 

echanical-chemical (THMC) modelling [ 5 , 10 ], etc. Many effort s 

ave been proposed to capture all these complex coupled pro- 

esses. For example, the coupled TH processes are considered to 

btain the temperature evolution of the buffer material of the DGR 

n South Korea [11] ; the THM responses of clay based materials 

host rock and buffer) exposed to elevated temperatures ( > 100 °C) 

or extended durations within the HITEC work package of the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

BBW Bentonite block wall 

DDML Data-driven machine learning 

DGR Deep geological repository 

EBS Engineered barrier system 

EDZ Excavation Damage Zone 

EURAD European Joint Programme on Radioactive 

Waste Management 

FE Full-scale Emplacement experiment 

G1, G2, G3 Sensor G1, G2, G3 in the GBM 

GBM Granulated bentonite material 

H1, H2, H3 Heater 1, heater 2, heater 3 

H1–1, H1–2 Sensor H1–1, H1–2 near the GBM-heater 1 

surface 

H2–1, H2–2 Sensor H2–1, H2–2 near the GBM-heater 2 

surface 

H3–1, H3–2 Sensor H3–1, H3–2 near the GBM-heater 3 

surface 

HLW High-level radioactive waste 

ILW Intermediate-level waste 

ML Machine learning 

MAE Mean absolute error 

MSE Mean squared error 

NN Neural network 

P H1 , P H2 , P H3 Heat power of each heater canister 

SF Spent fuel 

TH Thermal-hydraulic 

THC Thermal-hydraulic-chemical 

THM Thermal-hydraulic-mechanical 

THMC Thermal-hydraulic-mechanical-chemical 

URL Underground Laboratory 

3D Three-dimensional 

a, b, c parameters of empirical formula 

a 1 ∼a 5 , b 1 ∼b 5 parameters of empirical formula 

C P,block Specific heat of the bentonite block 

C P,clay Specific heat of the clay 

C P,concrete Specific heat of the concrete 

C P,EDZ Specific heat of the EDZ 

C P,i Specific heat of the medium 

L Distance between heaters centerlines, 

L = 7.6 m 

N Amount of the test dataset 

p -value Probability that the test statistic can take a 

value greater than or equal to the value of the 

test statistic, rejection of the null hypothesis if 

p -value < 0.1 

Q Specific heat source 

R Pearson’s r coefficient 

t Time 

T Temperature 

T C1,t Transient temperature at the position of sen- 

sor C1 at t = 101 days 

T H1–1,t Transient temperature at the position of sen- 

sor H1–1 at t = 101 days 

T H2–1,t Transient temperature at the position of sen- 

sor H2–1 at t = 101 days 

T H3–1,t Transient temperature at the position of sen- 

sor H3–1 at t = 101 days 

T G1,t Transient temperature at the position of sen- 

sor G1 at t = 101 days 

T G3,t Transient temperature at the position of sen- 

sor G3 at t = 101 days 

x, y, z Coordinates 
fi

2 
y exp , y exp,i Experimental dataset, experimental data 

y pred , y pred,i Prediction dataset, prediction data 

α Thermal diffusivity 

ρblock Density of the bentonite block 

ρclay Density of the clay 

ρconcrete Density of the concrete 

ρEDZ Density of the EDZ 

ρ i Dry density of the medium 

ρGBM,i or ρd Dry density of different sections of the GBM 

λblock Thermal conductivity of the bentonite block 

λcanister Thermal conductivity of the heater canister 

λconcrete Thermal conductivity of the concrete 

λclay Thermal conductivity of the clay 

λEDZ Thermal conductivity of the EDZ 

λGBM 

Thermal conductivity of the GBM, it is a 

dataset with 10 λGBM,i 

λGBM,i Thermal conductivity of various parts of the 

GBM 

λi Thermal conductivity of the medium 

μ Mean value 

σ Standard deviation 

ϕ Centerline location of the heater 1 in the y - 

axis direction, ϕ = 35.5 m 

URAD (European Joint Programme on Radioactive Waste Man- 

gement) project [12] , or an international collaborative research 

ECOVALEX project working on understanding and modelling of 

oupled THMC processes in geological systems [13] . In particularly, 

he HotBENT (High Temperature Effects on Bentonite Buffers) ex- 

eriment at Grimsel URL aims to evaluate current accepted safety 

unctions by investigating the effects of high temperatures on 

entonite-based barriers and their safety functions [14] , whereas 

n [15] the relation of the temperature evolution of the buffer 

aterial of the DGR and typical TH processes are described. 

Nevertheless, complex physical modelling, such as detailed 

HMC cannot handle coupled processes efficiently [16] . One reason 

s the complexity of the multiscale DGR system. Another reason is 

he nonlinearly coupled equations between multi-physics fields [5] . 

ecent studies have suggested that the data-driven machine learn- 

ng (DDML) such as neural network (NN) machine learning (ML) 

otentially provide an effective method to address such physical 

nd time-consuming incompatibility [ 5 , 17 ]. Therefore, there are ef- 

orts, also in other areas [ 17 , 18 ], to make a trade-off between the

DML and physical modelling and combine the ML and physical 

odelling. This can increase the calculation efficiency and reduce 

he “black-box” characteristics of pure DDML [ 16 , 19 , 20 ]. 

.2. Neural network machine learning 

Application of ML for the disposal of the HLW in the DGR 

s of interest in the past few years [21–25] . It should be noted 

hat the definitions of the combination of the physical modelling 

multi-physics-multiscale calculations for the DGR) with ML and 

he physical-informed ML are different in principle [17] . The lat- 

er so-called physical-informed ML implies that the ML is coupled 

ith physical constraints, theoretical equations and relations to en- 

ance the DDML performance [ 19 , 21 ]. Nevertheless, the combina- 

ion of the multi-physics-multiscale calculations with ML usually 

pscale the complex processes from the micro-scale to the macro- 

cale with the DDML [ 5 , 22–24 ]. 

Application of the ML in the area of disposal of the HLW in 

he DGR is of increasing interest in the past few years. Krishnan 

t al. (2018) [21] combined the physical constraints with an arti- 

cial neural network (ANN) to predicate the dissolution rates of 
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Fig. 1. Safety concept for the HLW and L/ILW repository according to the current disposal project (combined repository) [9] . (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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ilicate glasses in aqueous conditions within the DGR, which be- 

ongs to the typical physical-informed ML. Birkholzer et al. (2019) 

22] summarized the lessons learned for upscaling THM processes 

bserved in various heater experiments in the DGR. Prasianakis 

t al. (2020) [5] trained a shallow NN based on the results of 

icroscopic geochemical reactive transport simulations, and inte- 

rated it in a Darcy-scale reactive transport code. Tian et al. (2021) 

23] proposed a hybrid genetic algorithm (GA)-ANN method with 

he multi-physics and multiscale calculation. Menke et al. (2021) 

24] combined the decision tree from the pore scale porosity to the 

arcy-scale permeability with multi-physics and multiscale. Solans 

t al. (2021) [25] applied a GA-ANN to optimize simultaneously 

he effective neutron multiplication of the waste canister, to give 

ome examples. Furthermore, the NN based ML technique is a tool, 

hich has been successfully applied to coupled systems [ 22 , 23 ]. 

owever, the ML are applied for either the prediction of individual 

arameters or upscaling of process. The issue of ML for the multi- 

hysics calculation of a complex underground system is not well- 

ddressed yet. Therefore, a ML-assisted heat transfer modelling is 

stablished for the temperature evolution in the DGR. 

.3. Full-scale emplacement experiment at Mont Terri 

Currently, the DGR is the preferred solution for the disposal of 

he HLW in many countries [ 6 , 7 , 16 ], such as Switzerland [26] . The

roposed concept for a Swiss DGR is shown in Fig. 1 [27] and rep-

esents a design concept for a combined repository for low-level 

nd long-lived intermediate-level waste (L/ILW) and for HLW. Ac- 

ording to this concept, heat generating HLW canisters emplace- 

ent will be along long disposal tunnels. Within the framework 

f the radioactive waste disposal program in Switzerland, the FE 

xperiment in the Mont Terri URL has been implemented on a 

:1 scale with respect to the tunnel and HLW canister geometries. 
3 
he FE experimental setup represents different phases of the con- 

truction, waste emplacement, backfilling and early evolution of a 

F/HLW disposal tunnel of the DGR as realistically as possible [28] . 

For this purpose, a 50 m long experimental tunnel was con- 

tructed as shown in Fig. 2 . The tunnel contains a 12 m long in-

erjacent sealing section (ISS) at its deep end. On top of bentonite 

lock pedestals, three identical heaters with dimensions similar to 

hose of HLW canisters (4.6 m long), were emplaced in the FE 

unnel. Upon completion of the instrumentation and installation 

f the monitoring equipment, the remaining space was backfilled 

ith highly compacted granulated bentonite material (GBM). The 

lock pedestals, the GBM and the ISS jointly comprise the ben- 

onite buffer material, which is part of the engineered barrier sys- 

em (EBS), and thus also part of the multi-barrier concept con- 

ributing to the isolation and containment of the radioactive waste 

8] . The experiment collects monitoring data, e.g., for monitoring 

he temperature evolution in the near-field. These data could be 

sed for the model development and validation, initially for the FE 

xperiment and later on applied to a real DGR setup, where the de- 

ay heat released by the SF or HLW causes a temperature increase 

n the bentonite buffer. 

The temperature evolution of the buffer material (bentonite 

lock pedestals, GBM, ISS, etc.) depend on its design thermal pa- 

ameters like the thermal conductivity, density and saturation de- 

ree [29] . The inflow of the groundwater from the host rock influ- 

nces the saturation degree [10] and the thermal conductivity of 

he GBM. This defines, amongst other parameters, the peak tem- 

erature of the buffer material, which is a critical design criterion 

f the DGR [11] . For the DGR in Switzerland the design criterion 

s that the maximum temperature of the buffer material is below 

40 °C [30] . Higher temperatures can lead to unfavourable material 

roperties of the main component bentonite, and thus influence 

he overall safety of a DGR [6] . Hence, an accurate estimation of 
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Fig. 2. Illustration of FE tunnel with a scale ratio of 1:1 (without backfill) [8] . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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he temperature evolution of the buffer material of the DGR is es- 

ential to maintain the performance as well as the safety, economy, 

eliability of the DGR. 

For the FE experiment at Mont Terri URL in Switzerland, there 

re a lot of temperature sensor data available, however, much less 

aturation and other hydraulic sensor data, which makes a pure 

hysically based TH modelling difficult to be verified by the avail- 

ble sensor data. Yet, predictive models for the TH evolution of 

he near-field is essential for the safety analysis of HLW reposito- 

ies, also to demonstrate system understanding. Furthermore, such 

odels are the basis for the repository construction and mon- 

toring design, their optimization and for the decision support 

or repository closure. Multiscale modelling is required to cover 

ecessary space and time scales, which is quite challenging be- 

ause effects of thermal gradients between barrier materials and 

ost rocks, geo-chemical interaction at their interfaces and related 

hanges of their material properties, have to be considered. Here, 

ithin the foreseen TH framework, the less dense experimental 

ata for saturation degree are adopted for the NN and physically 

ased surrogate model, whereas heat transport is treated by a pure 

hysical heat transport model. The main driving force of this ap- 

roach is to speed up these calculations using a fast NN and phys- 

cally based surrogate model, which replaces the H in the purely 

hysically based TH calculations for the FE experiment [31] . 

Hence, the experimental data such as the saturation degree are 

dopted for the ML-based surrogate model, which has been cho- 

en from a variety of NN methods with the best performance. In 

ase of the FE experiment at Mont Terri URL, there are hundreds 

f sensors which generate tens of thousands values per day. For the 

acility like the FE experiment, large numbers of sensors as well as 

ven larger amount of the dataset need to be handled, monitored 

nd evaluated. Therefore, the following emerging issues need to be 

ddressed for the ML-assisted heat transport modelling within the 

GR: (1) fast and reliable calculation of temperature; (2) perfor- 

ances of different NN methods; (3) validation of results within 

he ML-assisted modelling framework; (4) comprehensive analy- 

is including the parameters uncertainties and sensor data assess- 

ent. 

.4. Scope of this paper 

A machine learning (ML)-assisted heat transport modelling 

ramework in the vicinity of a HLW like tunnel is developed and 

erified with the sensor data from the Full-scale Emplacement (FE) 

xperiment. In Section 2 , the physical heat transport model, physi- 

ally and NN based surrogate model of the thermal conductivity of 

he granulated bentonite material (GBM), material properties of FE 

xperiment, experiment sensor setup in FE experiment and calcu- 

ation cases setup are presented within the ML-assisted modelling 

ramework. In Section 3 , the ML performance, domain/mesh size 
4 
etermination, model validation, and applications with the ML- 

ssisted modelling framework. Section 4 comes to conclusions and 

uture comments. 

. Machine learning-assisted modelling framework 

The developed ML-assisted heat transport modelling framework 

s illustrated in Fig. 3 . The physical model concerns heat transport 

aking into account the geometrical setup of the tunnel, heater, 

ackfill, and host rock geometry, including materials properties and 

oundary conditions for heat transport. Hydraulic parameter influ- 

ncing the heat transport are represented by a surrogate model, 

hich delivers the time and space dependant saturation degree for 

he thermal conductivity of the GBM. The thermal conductivity of 

he GBM is the most varying parameter (see Section 3.4.1 ) due to 

he resaturation process and the GBM includes most sensors (see 

ection 2.4 ). This distribution is obtained from time and space de- 

endant experimental sensor data, which are used to feed a phys- 

cal supported NN model and replaces a physical hydraulic model 

or resaturation and related time dependant thermal conductivity 

f the GBM. The time and space dependant surrogate model for 

esaturation assists the physical heat transport model yielding sat- 

ration degree and related thermal conductivity of the GBM as a 

unction of time and space as learned from time and space depen- 

ant saturation (sensor) data. In addition, the material properties 

f the FE experiment components ( Section 2.3 ), the experimental 

ensor setup ( Section 2.4 ) and the procedure to determine domi- 

ant heat transport parameters for the FE experiment ( Section 2.5 ), 

re presented in this chapter. 

.1. Heat transport model and setup 

The physical heat transport model describes the temperature 

volution of the TH processes of the DGR system [15] . As the heat

ransport in a porous medium basically is dominated by the heat 

onduction [ 11 , 32 ], the following heat transport equation is solved 

or the physical modelling. 

λi 

(
∂ 2 T 

∂x 2 
+ 

∂ 2 T 

∂y 2 
+ 

∂ 2 T 

∂z 2 

)
+ ρi C P , i 

∂T 

∂t 
+ Q = 0 , (1) 

here λi is the thermal conductivity of the medium i; T is the tem- 

erature; x, y, z are the coordinates correspondingly; ρi is the dry 

ensity of the medium i ; C P , i is the specific heat of the medium i;

 is the specific heat source. 

.1.1. Initial conditions 

From Eq. (1) , the dry density ρi and thermal conductivity λi 

re two important physical parameters, which are time and space 

ependant for FE experimental conditions. The initial density pro- 

le of the GBM has been measured during the experiment setup 
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Fig. 3. Illustration of the ML-assisted heat transfer modelling framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 4. 3D slope scans and bulk dry densities of the GBM along the backfilled FE tunnel [31] . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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31] and is shown in Fig. 4 . The tunnel volume around the heaters 

nd in the gaps between heaters was filled with GBM by a spe- 

ially designed back-filling augur machine. The dry density ρGBM , i 

 ρd ) of different sections of the GBM varies initially in space and 

ater on with time according to occurring resaturation. In total, 9 

lope cans and thus dry density of 10 sections of the GBM are de- 

cribed in Fig. 4 . Therefore, the modelling will take this informa- 

ion of the density profile of the GBM into consideration. 

A temperature of 19 °C was assumed for the heater, EDZ, con- 

rete plug, bentonite block pedestals, shotcrete and concrete base 

s well as the GBM as initial temperature for material within the 

unnel, whereas a temperature gradient in the clay host rock of 

.06 °C/m [8] yield an initial temperature at the top and bottom 

urface of the clay host rock of 14 °C and 20 °C, respectively. 

.1.2. Boundary conditions 

The specific heat source Q for each heater is also adopted for 

he analysis for the physical modelling as shown in Eq. (2) . 

 = P/V, (2) 

here P is the heater power; V is the heater volume. 

These temperature boundary conditions at the top and bottom 

urface of the model domain were fixed at 14 °C and 20 °C, re-

pectively as boundary conditions, assuming that during the FE ex- 

eriment temperatures at the top and the bottom of the clay host 

ock will not be changed. In addition, for four lateral sides of the 

odel domain adiabatic boundary conditions have been assumed, 
5

ndicating that the model domain has been chosen for a conserva- 

ive analysis [33] . Finally, the heat power of the three heaters was 

efined as a boundary condition as shown in Fig. 5 . In Fig. 5 , the

eater 1 shows a ramp switch on, heater 2 shows one step switch 

n and heater 3 has initially several power interruptions. In total, 

he experimental time covers the first 548 days of the FE experi- 

ent from 15 December 2014 to 15 June 2016 [15] . 

.1.3. Geometry model setup 

A 3D geometric model of the FE experiment has been gener- 

ted with the COMSOL Multiphysics software as shown in Fig. 6 . 

t consists of a mesh of more than 1 million nodes and includes 

he FE cavern, the buffer materials, concrete plug, sections of the 

BM, ISS, BBW, the porous concrete, and the far field clay and near 

led clay host rock, as well as three heaters, the bentonite block 

edestals, the Excavation Damage Zone (EDZ), shotcrete and con- 

rete base (below the bentonite block pedestals) [9] . The density 

rofile of the GBM as shown in Fig. 4 was implemented in the nu- 

erical model ( Fig. 6 (b)). Variable thicknesses of the shotcrete and 

DZ and related varying tunnel cross section are ignored for sim- 

licity. 

.2. Surrogate model of thermal conductivity of GBM 

In contrast to the common description of TH processes using 

he Richards equation [10] , here the hydraulic processes occur- 

ing (mainly) in the buffer material, i.e. resaturation of the ben- 

onite material by water inflow from the host rock, are described 
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Fig. 5. Boundary conditions with heat power of three heaters ( P H1 , P H2 , P H3 ) from 15 December 2014 to 15 June 2016 (548 days). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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y a surrogate model based on measured saturation data. Using a 

ommonly coupled TH model would be very time-consuming and 

elatively challenging [ 16 , 34 ], because, if using the coarsely mea- 

ured water saturation data in a quite heterogeneous buffer ma- 

erial environment and related the strongly non-linear relationship 

etween water saturation and hydraulic conductivity [35] , a stiff

nd slow convergent TH model would be the result. 

With lessons learned from Birkholzer et al. (2019) [22] , the NN 

nd surrogate models can facilitate complementary modelling and 

ata analysis approaches. Different from the NN applications re- 

ated to DGRs [ 21 , 23–25 ], we use a physically and NN based sur-

ogate model for the H part and physical heat transport model for 

he T part. By coupling the physical constraints with NN methods 

or the surrogate model, the calculation performance of the mod- 

lling framework can be enhanced [ 19 , 21 ]. 

.2.1. Data preparation with raw dataset 

In order to enhance the performance of the ML, a suitable 

atasets from various sensors should be prepared to train the NN 

36] . In practice, some data are missing or abnormal due to sen- 

ors failure. Hence, some data preparations such as normalization 

37] , possible extension [38] and robust NN methods [39] for the 

xperimental dataset have to be taken to treat the raw datasets. 

Data were normalized by subtracting the mean value μ of each 

ataset and divided by the standard deviation σ ( σ = 1 in this sec- 
6

ion). The normalization of the input raw datasets with zero-mean 

nd constant standard deviation has been proven to be beneficial 

or NN training [37] . The datasets treated this way include the co- 

rdinates, time and temperature, which give the desirable perfor- 

ance of the NN and deal with abnormal values [38] . Three ro- 

ust NN methods are tested to effectively handle the prepared data 

39] : such as the back propagation (BP), cascade back propagation 

CBP), Elman NN. The NN methods are tested intensively with our 

ataset to select the most robust and best performing method. 

Applying the above three measures for the data preparation 

37–39] , a dataset with 20 pairs of temperature and saturation sen- 

ors, are used for the NN training. These data were taken at 548 

ays (from 15 December 2014 to 15 June 2016) for 20 sensors (sen- 

or #1 ∼#20) with one data point per day, resulting in 10,960 sets 

f data points in total. Each dataset includes 6 dimensions, the co- 

rdinates x, y, z , time t , temperature T and saturation degree S . The

ormer 5 parameters ( x, y, z, t, T ) are the input parameters, while

he latter parameter ( S ) is the output parameter. Hence, a dataset 

ith the dimension of 10,960 × 6 is set as the dataset for the ML. 

0% of the data are used for training, and the remaining 30% are 

sed for testing [40] . 

.2.2. Neural network methods for saturation degree 

The NN based ML surrogate model is developed explicitly for 

he FE experimental setup and is related to the measured sensor 
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Fig. 6. Perspective view and enlarged view of 3D geometric model of the FE experiment. (a) 3D perspective view. (b) Enlarged view with discretization according to material 

properties (layers of density profile are shown in local mesh near heater according to Fig. 4 ). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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ata on humidity/saturation (see Fig. 7 ) depending on sensor lo- 

ation (coordinates and material) and time. The NN methods (BP 

41] ( Fig. 7 (a)), CBP [42] ( Fig. 7 (b)) and Elman NN [43] ( Fig. 7 (c))

ested with our dataset are explained in Fig. 7 , where w and b

epresent the weights and biases, respectively. In the BP and CBP, 

he green arrows represent the connections between the neurons. 

ach arrow represents a weight w , which is a numerical value that 

etermines the strength of the connection between two neurons. 

he weights are adjusted during the training process using the 

ackpropagation algorithm or the cascade correlation algorithm, 

espectively, to minimize the error between the predicted output 

nd the actual output. In an Elman NN, 0 represents the input layer 

here the external inputs to the network are provided. In addition, 

 represents the hidden layer where the neurons in this layer are 

onnected to the input layer and to themselves from the previous 

ime step. The green arrows in Fig. 7 (c) represent the connections 

etween neurons in the current time step and the previous time 

tep. 
d

7 
.2.3. Neural network performance assessment 

To test the performance of the three NN methods described 

bove, three performance evaluation indicators such as the Pear- 

on’s r coefficient ( R ), mean squared error (MSE) and mean abso- 

ute error (MAE) are calculated to assess the NN performance [44] . 

hese performance indicators are defined as follows. 

 = 

∑ N 
i =1 (y exp , i − y exp )(y pred , i − y pred ) √ ∑ N 

i =1 (y exp , i − y exp ) 
2 ∑ N 

i =1 (y pred , i − y pred ) 
2 

, (3) 

SE = 

1 

N 

N ∑ 

i =1 

(y exp , i − y pred , i ) 
2 
, (4) 

AE = 

1 

N 

N ∑ 

i =1 

(y exp , i − y pred , i ) , (5) 

here N is the amount of the test dataset; y exp is the experimental 

ataset; y pred is the prediction dataset. 
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Fig. 7. Different structures of three neural network methods for saturation degree using Matlab, w and b represent the weights and biases, 5 input parameters ( x, y, z, t, T ), 

9 hidden layers, 1 output layer, 1 output parameter ( S ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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In the above equations, the Pearson’s r coefficient R is used to 

alculate the linear correlation of the prediction dataset and the 

xperimental dataset within the test dataset. It varies from −1 to 

 which represents the degree of the linear correlation. As defined, 

he MSE reflects the degree of the approximation. The MAE calcu- 

ates the average errors between two dataset and characterizes the 

ccuracy of the prediction dataset. 

.2.4. Physically and NN based surrogate model 

With the above dataset produced by both the sensor data and 

N method, a 3D distribution of the saturation degree is deter- 

ined. Five parameters ( x, y, z, t, T ) are considered for the satura-

ion degree. Other methods such as the Kriging method can hardly 

an handle data fitting functions for more than three parameters 

45] . 

The resaturation of the GBM, i.e., its saturation degree, is influ- 

nced by the inflow of the groundwater from the host rock [10] . 

ater enters the cylindrical tunnel from the host rock, therefore, 

he saturation degree should be symmetric in the x, z direction in 

ig. 6 (a) (ignoring advection because of low permeability). Consid- 

ring the three heaters distributed in the y -axis direction, the sat- 

ration degree decreases with the distance from heaters. Hence, 

 sinusoidal function with respect to the position along the tun- 
8 
el axis is proposed ( Eq. (6) ). Because of the effect of the grav-

ty, the saturation degree increases with the decrease of the z di- 

ection. The saturation monotonously varies with the time t and 

emperature T . Considering the density profile (see Fig. 4 ), the ex- 

erimental data (see Table 4 ), the NN based saturation degree (see 

ection 2.2.2 ), heater locations, time evolution, water resaturation 

nd gravity, the fitting parameters of a 1 ∼a 5 , b 1 ∼b 5 are determined 

ith Eq. (6) . 

 = 

(
a 1 

√ 

x 2 + z 2 + b 1 

)
· { a 2 sin [ 2 π/L ( y − ϕ ) ] + b 2 } · ( a 3 z + b 3 ) 

· ( a 4 t + b 4 ) · ( a 5 T + b 5 ) , (6) 

here a 1 , b 1 , a 2 , b 2 , a 3 , b 3 , a 4 , b 4 , a 5 , b 5 are parameters which are

btained by the fitting dataset; L is the distance of heaters center- 

ines, L = 7.6 m for FE tunnel; ϕ is the centerline location of the 

eater 1 in the y -axis direction, ϕ = 35.5 m for FE tunnel. 

According to Bai et al. [10] , bentonite thermal conductivity 

GBM , i can be described as a function of bentonite density and sat- 

ration degree S ( Eq. (7) , where ρGBM , i represents the bentonite 

ensity in the different GBM sections i along the tunnel and λGBM , i 

s the related thermal conductivity in section i (see Fig. 4 ). Thus, 

he influence of the hydraulic parameter saturation degree S on 

he thermal parameter λGBM , i is directly taken into account, cou- 
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Table 1 

Physical parameters of typical material of EBS in FE. 

Physical parameters Value Ref. 

Thermal conductivity of EDZ λEDZ (W ·m 

−1 ·K −1 ) 2.4 (H)/1.3 (V) [8] 

Thermal conductivity of bentonite block λblock (W ·m 

−1 ·K −1 ) 0.7 (0.26 ∼0.96) [47] 

Thermal conductivity of clay λclay (W ·m 

−1 ·K −1 ) 2.4 (H)/1.3 (V) [8] 

Thermal conductivity of concrete λconcrete (W ·m 

−1 ·K −1 ) 0.2 (0.1 ∼0.3) [8] 

Thermal conductivity of heater canister λcanister (W ·m 

−1 ·K −1 ) 50 ∗

Density of EDZ ρEDZ (kg ·m 

−3 ) 2340 [8] 

Density of bentonite block ρblock (kg ·m 

−3 ) 1780 [48] 

Density of clay ρclay (kg ·m 

−3 ) 2340 [8] 

Density of concrete ρconcrete (kg ·m 

−3 ) 2300 [8] 

Specific heat of EDZ C P,EDZ (J ·kg −1 ·K −1 ) 1086 [8] 

Specific heat of bentonite block C P,block (J ·kg −1 ·K −1 ) 800 [48] 

Specific heat of clay C P,clay (J ·kg −1 ·K −1 ) 995 [8] 

Specific heat of concrete C P,concrete (J ·kg −1 ·K −1 ) 750 [8] 

Specific heat of GBM C P, GBM (J ·kg −1 ·K −1 ) 800 [8] 

where H and V represent values in the horizontal and vertical directions respectively; Ref. represents “Reference”; ∗

means an assumption value. 
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Table 2 

Corresponding sensors ID and 20 pair-sensors of temperature and saturation degree. 

No ID of temperature 

sensor 

ID of saturation 

degree sensor 

x /m y /m z /m 

#1 T-BH2–230_1 RH 

–H2–230_1 0.293 27.9 0.514 

#2 T-H3–230-O_4 RH 

–H2–230_2 0.608 27.9 −0.022 

#3 FE_TEM_108 FE_HUM_020 1.036 27.9 0.889 

#4 FE_TEM_109 FE_HUM_021 −0.707 27.9 1.283 

#5 FE_TEM_110 FE_HUM_022 0.911 27.9 0.772 

#6 FE_TEM_111 FE_HUM_023 −0.625 27.9 1.139 

#7 FE_TEM_106 FE_HUM_018 0.939 28.9 0.814 

#8 FE_TEM_107 FE_HUM_019 −0.623 28.9 1.131 

#9 FE_TEM_098 FE_HUM_012 1.003 31.25 0.851 

#10 FE_TEM_100 FE_HUM_014 −0.698 31.25 1.238 

#11 FE_TEM_101 FE_HUM_015 0.882 31.25 0.723 

#12 FE_TEM_103 FE_HUM_017 −0.62 31.25 1.083 

#13 FE_TEM_094 FE_HUM_008 1.056 35.22 0.886 

#14 FE_TEM_095 FE_HUM_009 −0.704 35.22 1.224 

#15 FE_TEM_096 FE_HUM_010 0.93 35.22 0.756 

#16 FE_TEM_025 FE_HUM_025 −0.027 23.9 −1.257 

#17 FE_TEM_105 FE_HUM_027 0 23.9 −1.113 

#18 FE_TEM_013 FE_HUM_013 −0.011 31.25 −1.281 

#19 FE_TEM_016 FE_HUM_016 −0.004 31.25 −1.131 

#20 T-BH1–230_1 RH-H1–230_1 0.318 35.22 0.512 
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ling the TH processes according to 

GBM , i = a · ρGBM , i + b · S + c, (7) 

here a, b are the fitting parameters related to the bentonite den- 

ity ρGBM , i and the saturation degree S, respectively; and c is the 

tting constant according to [46] ( a = 0.641, b = 0.624, c = −0.510).

.3. Material properties of FE experiment components 

The physical parameters of the materials in the EBS of the FE 

xperiment like the EDZ, bentonite block pedestals, etc. are sum- 

arized in Table 1 . Particularly, the horizontal (H) and vertical 

V) directions of the anisotropic thermal conductivities of the EDZ 

EDZ and of the clay λclay are considered and the inclination of 

he bedding plane is considered. The concrete material proper- 

ies in Table 1 represent the shotcrete and concrete base. Similarly 

n Table 1 , the bentonite block properties represent the bentonite 

lock pedestals and the bentonite block wall (BBW) properties. 

For all materials in Table 1 , constant specific heat capacities, 

ensities and thermal conductivities of the EDZ, concrete and ben- 

onite block are assumed to decouple the calculation from the heat 

ransport model. This is also consistent with details given in [31] . 

lthough the thermal properties of the EDZ, concrete and ben- 

onite block may slightly change with temperature, their values are 

ept for modelling. Only minor effects on the temperature evolu- 

ion of the buffer material in the FE experiment are observed and 

hown in Section 3.1 within the model validation procedure. As 

entioned above, the thermal conductivity of each section of the 

BM changes with the time and space while the specific heat of 

he GBM is kept constant. It should be mentioned that the con- 

tant values of the physical parameters in Table 1 are used for the 

alidation of the physical model, while variation ranges of these 

arameter values have been used to identify dominating parame- 

ers. 

.4. Experimental sensor setup 

The sensors installed for FE experiment should yield a dataset 

epresentative of the early stage evolution of a HLW repository 

unnel enabling comparison with modelling approaches and cal- 

ulation analysis of the FE experiment. During the initial phase of 

he FE experiment, some of the installed sensors showed already 

ailures [9] . Therefore, representative sensors (20 + 20 + 10 = 50 

ensors) at various cross-section (which are mainly focused on in 

he report [15] ) are selected for the calculation analysis shown in 

ig. 8 . 
9 
Corresponding sensors identify-number (ID) and typical 20 

airs of temperature/saturation degree sensors (20 + 20 = 40 sen- 

ors) are included in Table 2 . These pairs of temperature/saturation 

egree sensors record the experimental datasets of temperature 

nd saturation degree at the same positions. Sensor pairs are 

ainly distributed in the upper half of the GBM (sensor #1 ∼#16, 

ed dot series) [15] as shown in Fig. 8 . In the lower half of the

BM, there are just 4 pairs of sensors (sensor #17 ∼#20, black dot 

eries) related with the temperature/saturation degree. There are 

ot enough sensors in the lower part of the experiment to ade- 

uately describe the saturation. Therefore, we are using a NN based 

urrogate model to predict the saturation degree and use it as in- 

ut for the heat transport modelling. 

For model validation, corresponding sensors ID and 10 tem- 

erature sensors of the green dot series in Fig. 8 are chosen as 

epresentative temperature sensors at different distances from the 

eater within the GBM in Table 3 . Six temperature sensors, e.g., 

1–1, H1–2 are near the GBM-heater surface experience strong 

nitial temperature gradient. Three temperature sensors, including 

he G1, G2 and G3 within the GBM, are relatively far from three 

eaters, experiencing moderate temperature gradient, and the tem- 

erature sensor C1 is in the clay host rock (out of scale in Fig. 8 ,

nd experiences a small temperature gradient. 
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Fig. 8. Schematic diagram of positions of typical 20 pairs of temperature/saturation degree sensors and 10 temperature sensors in the upper and lower half of the GBM and 

heaters, red dot series of sensors represent pairs of temperature/saturation sensors #1 ∼#16 within the upper GBM, black dot series of sensors indicate pairs of tempera- 

ture/saturation sensors #17 ∼#20 within the lower GBM, green dot series of sensors represent 10 temperature sensors (1 temperature sensor in the clay is not shown). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Corresponding sensors ID and 10 temperature sensors for model validation. 

Sensor ID of temperature sensor x /m y /m z /m 

H1–1 T-H1–330-O_3 0.523 36.45 −0.043 

H1–2 T-H1–330-O_1 −0.057 36.45 0.479 

H2–1 T-H2–230-O_3 0.508 27.9 −0.022 

H2–2 T-H2–230-O_5 −0.542 27.9 −0.022 

H3–1 T-H3–230-O_3 0.505 20.28 −0.026 

H3–2 T-H3–230-O_5 −0.545 20.28 −0.026 

G1 T-RH-H2–230_4 −0.637 27.9 −0.022 

G2 T-BH2–230_4 −0.642 27.9 −0.022 

G3 T-BH2–230_6 0.395 27.9 0.692 

C1 BFEB006_TEM_01 2.638 27.9 −3.024 
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.5. Calculation case setup for dominant parameters analysis 

In order to analyse and identify the dominant parameters influ- 

ncing the heat transport in the FE experiment, the orthogonal test 

ethod is selected for the dominant parameters analysis presented 

n Section 3.3 [49] . It used to dramatically reduce the number of 

ampling cases. Heat transport processes in the FE experiment are 

nfluenced mainly by seven design parameters including the heat 

ower of the three heaters ( P H1 , P H2 , P H3 ), thermal conductivities

f the GBM, the EDZ λEDZ , the heater canister λcanister , and the ben- 

onite block λblock . 

Table 4 shows seven parameters and their individual ranges in- 

estigated, which are covered by 4 parameter values each. Heater 

ower values ( P H1 , P H2 , P H3 ) are related to initial experimental

eater phases, the steady-state value of 1350 W and a potential 

arger possible value of 1500 W. Values of parameter [ λGBM1 , .., 

GBM10 ] are chosen equidistantly around the values of the valida- 

ion model of dataset 1.0 × [ λGBM1 , .., λGBM10 ], where λGBM1–10 

s related to the thermal conductivities of 10 sections of the 

BM as shown in Fig. 4 . Values of parameter λEDZ and λcanister 

re also chosen around the values of the validation model of 

.4 W ·m 

−1 ·K 

−1 and 1.3 W ·m 

−1 ·K 

−1 in the horizontal and verti-

al directions, and 50 W ·m 

−1 ·K 

−1 , respectively, whereas parame- 

er λblock values are chosen according to values given in [8] . From 

his set of parameter variations, the orthogonal test methods yields 

 matrix of 32 combinations of input parameter values given in 

able 5 . 
10 
. Results and discussion 

In this section, the results of testing different ML algorithms 

nd their performance are presented, which yield the most robust 

urrogate model for providing input, 3D thermal conductivity dis- 

ribution as a function of time, for the physically based heat trans- 

ort model. To validate the measured temperature sensor data, in- 

uences of the domain size/mesh size have been tested for the 

eat transport model setup to finally reproduce temperature data 

or 10 representative temperature sensors. Then, the parameter set 

or the validation model has been used to identify the dominat- 

ng parameters applying an orthogonal test method with 32 test 

ases. Latter allows to determine the parameter uncertainty with 

espect to reliability of sensor data and a predefined uncertainty 

andwidth of important model parameter. 

.1. Data preparation and machine learning performance 

Sensor data preparation is important for the performance of the 

N based ML algorithms. For simplicity and for automation rea- 

ons, raw datasets from the FE experiment are handled directly by 

he NN based ML methods to introduce as less user activity as pos- 

ible for the data preparation. 

The three NN based ML techniques have been tested with the 

0% −50%, 60% −40% and 70% −30% train-test datasets, whereby the 

0% −30% train-test setup performs best for all ML methods. In 

ig. 9 , three indicator parameters (see Section 2.2.3 ) for the per- 

ormance like the R , MSE and MAE are shown for the three NN 

ased ML techniques. All three NN based ML algorithms perform 

ell with a 70% −30% train-test datasets. The Elman NN operates 

etter than the BP, CBP methods with R = 0.9911, MSE = 4.62 and 

AE = 1.44. It should be mentioned that all performance indica- 

ors are obtained based on the raw dataset, not the normalized 

ataset. 

.2. Domain and grid size determination and model validation 

To investigate the domain size effect and grid independence, a 

ataset of 137 × 2 data points for temperature sensors H2–1 and 

1 (in the clay) are selected being the nearest and most distant 

ensor locations from the heat source, respectively. Three domain 
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Table 4 

Parameters and values for orthogonal test cases. 

Values Parameters 

A, P H1 (W) B, P H2 (W) C, P H3 (W) D, λGBM (W ·m 

−1 ·K −1 ) E, λEDZ 

(W ·m 

−1 ·K −1 ) 

F, λcanister 

(W ·m 

−1 ·K −1 ) 

G, λblock 

(W ·m 

−1 ·K −1 ) 

1 1050 1050 1050 0.8 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

20 0.3 

2 1200 1200 1200 0.9 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

50 0.5 

3 1350 1350 1350 1.0 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

80 0.7 

4 1500 1500 1500 1.1 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

110 0.9 

where the parameter λGBM is the combination of the thermal conductivity of 10 sections of the GBM; for the parameter λEDZ , H and V represent values in the horizontal and 

vertical directions respectively. 

Fig. 9. Comparison of 30% predicted (Pred.) data by BP, CBP and Elman neural network machine learning methods with a 70% input training dataset from the experimental 

(Exp.) sensor dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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izes and three meshes are calculated at the positions of the sen- 

ors H2–1 and C1 during t = 0 ∼548 days correspondingly. The re- 

ults are shown below for sensor H2–1; those for C1 are shown 

n Fig. S1 in the Supplementary Material. For validation of the ML- 

ssisted heat transport model, 10 representative temperature sen- 

ors data are considered using the determined calculation domain 

nd mesh size. 
11 
.2.1. Domain and grid size determination 

For the domain size determination as well as the grid inde- 

endence analysis, three domain sizes and three meshes are con- 

ucted as shown in Table 6 . It assures that temperature bound- 

ry conditions at the domain boundaries do not influence the 

odel results. For comparison with the modelling results, a dataset 

ith 137 × 2 data points at positions of the temperature sensors 
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Table 5 

Design results of test cases for dominant parameters. 

Case Parameters Design schemes 

A, P H1 (W) B, P H2 (W) C, P H3 (W) D, λGBM (W ·m 

−1 ·K −1 ) E, λEDZ 

(W ·m 

−1 ·K −1 ) 

F, λcanister 

(W ·m 

−1 ·K −1 ) 

G, λblock 

(W ·m 

−1 ·K −1 ) 

1 1050 1050 1050 0.8 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

20 0.3 A1B1C1D1E1F1G1 

2 1050 1050 1200 0.9 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

110 0.7 A1B1C2D2E4F4G3 

3 1050 1200 1350 1.1 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

50 0.7 A1B2C3D4E1F2G3 

4 1050 1200 1500 1.0 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

80 0.3 A1B2C4D3E4F3G1 

5 1050 1350 1050 1.0 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

110 0.5 A1B3C1D3E2F4G2 

6 1050 1350 1200 1.1 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

20 0.9 A1B3C2D4E3F1G4 

7 1050 1500 1350 0.9 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

80 0.9 A1B4C3D2E2F3G4 

8 1050 1500 1500 0.8 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

50 0.5 A1B4C4D1E3F2G2 

9 1200 1050 1350 1.1 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

110 0.5 A2B1C3D4E3F4G2 

10 1200 1050 1500 1.0 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

20 0.9 A2B1C4D3E2F1G4 

11 1200 1200 1050 0.8 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

80 0.9 A2B2C1D1E3F3G4 

12 1200 1200 1200 0.9 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

50 0.5 A2B2C2D2E2F2G2 

13 1200 1350 1350 0.9 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

20 0.3 A2B3C3D2E4F1G1 

14 1200 1350 1500 0.8 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

110 0.7 A2B3C4D1E1F4G3 

15 1200 1500 1050 1.0 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

50 0.7 A2B4C1D3E4F2G3 

16 1200 1500 1200 1.1 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

80 0.3 A2B4C2D4E1F3G1 

17 1350 1050 1350 0.8 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

50 0.9 A3B1C3D1E4F2G4 

18 1350 1050 1500 0.9 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

80 0.5 A3B1C4D2E1F3G2 

19 1350 1200 1050 1.1 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

20 0.5 A3B2C1D4E4F1G2 

20 1350 1200 1200 1.0 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

110 0.9 A3B2C2D3E1F4G4 

21 1350 1350 1350 1.0 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

80 0.7 A3B3C3D3E3F3G3 

22 1350 1350 1500 1.1 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

50 0.3 A3B3C4D4E2F2G1 

23 1350 1500 1050 0.9 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

110 0.3 A3B4C1D2E3F4G1 

24 1350 1500 1200 0.8 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

20 0.7 A3B4C2D1E2F1G3 

25 1500 1050 1050 1.1 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

80 0.7 A4B1C1D4E2F3G3 

26 1500 1050 1200 1.0 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

50 0.3 A4B1C2D3E3F2G1 

27 1500 1200 1350 0.8 × [ λGBM1 , .., λGBM10 ] 2.2 (H) 

1.2 (V) 

110 0.3 A4B2C3D1E2F4G1 

28 1500 1200 1500 0.9 × [ λGBM1 , .., λGBM10 ] 2.4 (H) 

1.3 (V) 

20 0.7 A4B2C4D2E3F1G3 

29 1500 1350 1050 0.9 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

50 0.9 A4B3C1D2E1F2G4 

30 1500 1350 1200 0.8 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

80 0.5 A4B3C2D1E4F3G2 

31 1500 1500 1350 1.0 × [ λGBM1 , .., λGBM10 ] 2.0 (H) 

1.1 (V) 

20 0.5 A4B4C3D3E1F1G2 

32 1500 1500 1500 1.1 × [ λGBM1 , .., λGBM10 ] 2.6 (H) 

1.4 (V) 

110 0.9 A4B4C4D4E4F4G4 
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r

r

2–1 and C1 are selected. In Table 6 , results for three domain 

izes of 50 m × 80 m × 50 m, 100 m × 80 m × 100 m and

50 m × 100 m × 150 m are calculated and shown in Fig. 10 (a). In

ddition, calculations with three different meshes with 1253,142, 

719,617 and 2274,148 nodes are tested. The results are shown in 

ig. 10 (b). 
12 
In Table 6 and Fig. 10 (a), the maximum relative errors of cal- 

ulation results between the domain 1, domain 2 and domain 3 

re 1.12%, 0.74%, respectively (compared to domain 3). Similarly in 

able 6 and Fig. 10 (b), the maximum relative errors of calculation 

esults between the mesh 1, mesh 2 and mesh 3 are 1.79%, 0.99%, 

espectively (compared to mesh 3). In order to make the trade- 
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Fig. 10. Comparison of calculation data of at position of sensor H2–1 with (a) three different domain sizes and (b) three different meshes. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Comparison of temperature evolution T and relative errors between calculation and experimental data at positions of 10 representative sensors during 1.5 years 

( t = 0 ∼548 days). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 

Maximum relative errors of sensor H2–1with three domain sizes and three meshes. 

Sensor Size ( x × y × z) Maximum 

relative error 

Time of maximum 

error t /day 

Domain 1 50 m × 80 m × 50 m 1.12% 153 

Domain 2 100 m × 80 m × 100 m 0.74% 165 

Domain 3 150 m × 100 m × 150 m ∼ ∼
Mesh 1 1253,142 1.79% 37 

Mesh 2 1719,617 0.99% 61 

Mesh 3 2274,148 ∼ ∼

o

1
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1
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ff between the calculation effort s and accuracy, the domain of 

00 m × 80 m × 100 m (domain 2) and mesh size of 1719,617 

mesh 2) are selected for the ML-assisted heat transport modelling 

or the FE experiment. 

.2.2. Validation of physical model with experimental data 

The comprehensive comparison of the temperature evolution T 

nd relative errors between the calculation and experimental data 

f 10 representative sensors are shown in Fig. 11 . The calculation 

etails and the related material properties are given above (see 

ection 2.2 - 2.4 ). For the identification of the “best fit” or validation 
13 
ase parameters, which reproduce the experimental data, also re- 

ults of Section 3.3 and 3.4 have been used. The chosen experimen- 

al data consist of 137 data points for 10 representative tempera- 

ure sensors each, which are compared with the calculated data 

ime t = 0 to 548 days as shown in Fig. 11 . The positions of 10

emperature sensors include sensors near the GBM-heater surfaces, 

ensors within the GBM and sensor in the host clay. Hence, a large 

xperimental dataset of 137 × 10 data points are taken into ac- 

ount for the model validation. It should be noted that the experi- 

ent sensor data are the raw dataset. 

Considering that the temperature T near the three GBM-heater 

urfaces are higher than that in the GBM or clay, the peak temper- 

ture near the GBM-heater surfaces are also larger and hence will 

e more focused. From Fig. 11 (a) ∼(d), except a few data points, 

he maximum relative errors between the calculation and experi- 

ental data at positions of the sensor H1–1, H2–1, H2–1 and H2–2 

re within 7.0%. Those few data points with the larger errors occur 

uring the initial transient state which includes stepwise heater 

ower increases and some power interruptions. For sensors H3–

 and H3–2 ( Fig. 11 (e) ∼(f)), the maximum relative errors between 

he calculation and experimental data are within 9.0%. This slightly 

arger errors might be induced by the abnormal operation of the 

eater 3, which can be seen in Fig. 7 (c) (see Section 2.1.2 ), where
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Fig. 11. Continued 
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 peak power of around 1500 W stayed for only 1 day and decrease

o nearly zero next day and later on achieving the target value of 

350 W. The maximum relative errors during the transient initial 

hase reduce to a value lower than 3.5% at later times. 

For sensors at larger distance from the heater within the GBM, 

 similar trend is observed in Fig. 11 (g) ∼(i). The maximum error is
14 
ithin 7% at positions of the sensors G1, G2 and G3 ( Fig. 11 (g) ∼(i)).

or the most distant sensor C1 in the clay, the relative error be- 

ween the calculation results and experimental data is within 3% 

see Fig. 11 (j)). Additionally, the coordinate scale of Fig. 11 (j) re- 

ains consistent with that in other sensors and presents the mag- 

itude more clearly. For the sensors like the sensor H1–2, H2–2 
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Fig. 11. Continued 
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Fig. 11. Continued 
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Fig. 12. Temperature distribution of the validation case calculated at y - z, x - z cross sections at times t = 100 days and 500 days. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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3–2 and G-2 as shown in Fig. 11 , those are quite similar as the

ther 6 temperature sensors. Therefore, the typical 6 temperature 

ensors are reasonably selected for the dominant parameters anal- 

sis. 

In addition to the comparison of temperature evolution at 10 

epresentative sensor locations, the temperature distributions (2D 

ross section through the 3D model domain) of the validation case 

t y - z, x - z cross sections at the time t = 100 days and 500 days are

resented in Fig. 12 . According to the boundary condition of the 

eater 1, specific heat source Q of the heater 1 started earlier than 

hat of other heaters. Hence, the temperature near the heater 1 is 

arger than that near the other heaters in Fig. 12 (a). In Fig. 12 (b),

he temperature values near heaters are nearly steady state level 

t the x - z cross section. The temperature in the host clay is lower

han the near heater GBM region, which is consistent with that in 

ig. 11 . In Fig. 12 (c), the whole tunnel is heated up and the temper-

ture of the clay increased. Especially in Fig. 12 (d), the temperature 

eld shows an ellipse pattern with an oblique angle. This reflects 

he inclination angle of 34 ° of the bedding plane of the clay with 

he considered anisotropy of thermal conductivity with higher val- 

es parallel to the bedding plane than in the normal direction of 

he bedding plane. 

In total, except the sensor abnormal, the maximum relative er- 

ors between the calculation and experimental data are in the rea- 

onable accuracy range of 7%. Discrepancies between the calcula- 

ion results and experimental data can be attributed to the follow- 

ng reasons. It is assumed that a few humidity sensors represent 

ell the whole 3D saturation degree in the GBM, whereby het- 

rogeneous resaturation is likely to occur, but cannot be measured 
17 
ith enough detail to be used for detailed hydraulic modelling (H 

odelling of resaturation). Moreover, some sensors operate abnor- 

ally during the transient conditions like the heat power sensor 

ata of the heater 3 shown in Fig. 5 . It would introduce the addi-

ional relative error. This is also confirmed in the reference report 

14] . Overall, the calculation results agree well with the large ex- 

erimental dataset of 137 × 10 data points. Therefore, it illustrates 

hat the ML-assisted heat transport modelling can accurately pre- 

ict the temperature evolution of the FE experiment. 

.3. Dominant parameters for transient temperature evolution 

In order to identify the dominant parameters responsible for 

he observed temperature evolution in the FE experiment, an or- 

hogonal test method has been used (see Section 2.5 ). The results 

re also taken into account for the validation case parameters. At 

ositions of 6 representative sensors H1–1, H2–1, H3–1, G1, G3 and 

1, the transient temperature evolution is analysed based on the 

rocedure described in Section 3.2 . Particularly, 32 cases are calcu- 

ated based on the orthogonal test method using parameters values 

iven in Table 5 . Variations of the transient temperature evolution 

or the 3 sensors H1–1, G3 and C1 with parameters are illustrated 

 Fig. 13 ). The result for the other 3 sensors H2–1, H3–1 and G1 are

dded in the Supplementary Material. 

For the transient temperature evolution T H1_1,t , T G3,t , and T C1,t at 

ime t = 101 days, the response parameters are given in Fig. 13 . In

ddition, a p -test is introduced for the variance analysis. It is the 

robability that the test statistic can take a value greater than or 

qual to the value of the test statistic (if the p -value is less than
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Fig. 13. Results of dominant parameters analysis for transient temperature evolution. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

18 



G. Hu and W. Pfingsten International Journal of Heat and Mass Transfer 213 (2023) 124290 

Fig. 13. Continued 
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r equal to the specified significance level 0.1, the null hypothesis 

s rejected) [ 49 ]. A p -value less than 0.1 means statistically signif-

cant. For example in Fig. 13 (a), the p -values of 0, 0, 0 and 0.06

eveal that the transient temperature T H1_1,t is significantly influ- 

nced by parameters P H1 , λGBM 

, λblock and λcanister sequentially. In 

ontrast, the p -values of 0.92, 0.57 and 0.40 indicate that param- 

ters λEDZ , P H2 and P H3 have little effects on the transient tem- 

erature T H1_1,t . For the range of each parameter in Fig. 13 (a), val-

es of 36.3, 18.5, 8.3 and 2.6 show that the transient temperature 

 H1_1,t is also strongly affected by parameters P H1 , λGBM 

, λblock and 

canister sequentially. This is consistent with the variance analysis. 

In addition, the transient temperature evolution T G3,t is dom- 

nated by parameters P H2 , λGBM 

, λblock and λcanister in order in 

ig. 13 (b). Transient temperature evolution T C1,t is affected by pa- 

ameters P H2 , λblock , P H3 , and P H1 sequentially as given in Fig. 13 (c).

t indicates that the transient temperature far away like the tran- 

ient temperature evolution T G3,t is more influenced with the cor- 

esponding heater power ( P H1 or P H2 or P H3 ), λGBM 

, λblock and 

canister . However, the transient temperature evolution T C1,t does 

ot change so much compared with that of T H1_1,t and T G3,t . Signif- 

cant parameters and corresponding mean responses of the tran- 

ient temperature evolution of T H2_1,t , T H3_1,t , T G2,t are almost quite 

imilar to each other as illustrated in Fig. S2 in Supplementary Ma- 

erial. 

Together with the variance and range analysis, the transient 

emperature evolution near the GBM-heater surfaces and within 

he GBM mainly rely on the corresponding heat power ( P H1 , P H2 

r P H3 ), and thermal conductivities of the GBM λGBM 

, of the ben- 

onite block λblock and of the canister λcanister sequentially. In the 

hort term, the transient temperature evolution in the GBM is only 

ffected by the nearest heater power, thermal conductivities of the 

BM λGBM 

, the bentonite block λblock and the canister λcanister . 

oreover, the transient temperature evolution in the clay is af- 
19 
ected by all three heater powers ( P H1 , P H2 and P H3 ) and thermal

onductivity of the bentonite block λblock . It is also due to the fact 

hat the position of the sensor C1 in the clay is relatively close 

o the bentonite block pedestals. However, the temperature T C1,t 

hanges marginally. This is due to the short heating time period 

f only 1.5 years and the large distance of C1 to the heaters. 

With the help of the dominating parameter analysis, the valida- 

ion case parameters can be identified. In addition, such an analysis 

an help to “design” a targeted temperature evolution in the heater 

ear-field. A similar analysis has been performed for the peak tem- 

erature of the 6 sensors varying the same parameters, which is 

resented in Tables S1-S6 in the Supplementary Material. 

.4. Parameter uncertainty and sensor data assessment 

Thermal conductivities of the GBM λGBM 

and bentonite blocks 

block are functions of the saturation, which strongly affect the 

imulated temperature evolutions near the heater surface, and in 

he buffer material and host rock [31] . 

.4.1. Parameter uncertainty for FE experiment 

Based on [15] , bentonite blocks will be stable as long as the am- 

ient air does not exceed the equilibrium relative humidity of the 

entonite blocks by more than 5% −10%. Therefore, a subsequent 

ncertainty range of ±10% is chosen for the thermal conductivity 

f the bentonite blocks as shown in Table 7 . For the concrete ma- 

erial, saturation degree is also quite constant [8] . As there is no 

pecific uncertainty for the thermal conductivity of the concrete 

aterial in the FE experiment, a conservative uncertainty range of 

10% is selected. For the saturation degree values, the accuracy 

f capacitive sensors for the (type Hygrochip HYT-939 and chip 

HT75) is ±1.8% [31] . Also, the accuracy of the Elman NN based 

L is within ±3.0% (see Section 3.1 ). Hence, the uncertainty range 
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Table 7 

Parameter uncertainty of three thermal conductivities for FE experiment. 

Physical parameters Minimum value Maximum value Reference 

Thermal conductivity of GBM λGBM (W ·m 

−1 ·K −1 ) 0.90 × [ λGBM1 , .., λGBM10 ] 1.10 × [ λGBM1 , .., λGBM10 ] [31] 

Thermal conductivity of bentonite block λblock (W ·m 

−1 ·K −1 ) 0.63 0.77 [15] 

Thermal conductivity of concrete λconcrete (W ·m 

−1 ·K −1 ) 0.18 0.22 [8] 

Fig. 14. Bands of temperature uncertainty at positions of sensors H1–1, H2–1, G1, G3 with validation case. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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s about ±5.0% for the thermal conductivity of the GBM (from 

q. (7) ). Nevertheless, a conservative uncertainty range of ±10% 

or the thermal conductivity of the GBM λGBM 

in Table 7 is cho- 

en to be consistent with that of the thermal conductivity of the 

entonite block λblock and concrete λconcrete . Then, the uncertainty 

ange of ±10% of each parameter is both reasonable and conserva- 

ive in Table 7 . All parameters uncertainties are based on the vali- 

ation model case described in Section 3.2 . 

.4.2. Calculated temperature uncertainty bands and sensor data 

ssessment 

Using parameter values given in Table 7 , bands of temperature 

ncertainty are calculated at positions of 6 typical sensors based 

n the validation case. Calculation results at positions of the sen- 

ors H1–1, H2–1, G1, G3 are presented in Fig. 14 . The low and high

imits are calculated with parameter limits of three thermal con- 

uctivities for FE experiment. In addition, the bands of tempera- 
20 
ure uncertainty at positions of the sensors H3–1, C1 are included 

n Fig. S5 in Supplementary Material. 

From Fig. 14 , all the bands of the temperature uncertainty at 

ositions of various sensors are quite narrow during the transient 

eriod ( t < 150 days) while those are relatively wide after the tran- 

ient period ( t > 150 days). A reason for this behaviour is due to

he fact that thermal conductivity of the canister is an order of 

agnitude larger than that in the GBM, yielding a fast heat trans- 

ort in the canister and much slower heat transport in the GBM, 

hich causes steep and narrow bands for sensors in the GBM near 

he canister surface. 

As shown in Fig. 14 (also see Fig. S6 in the supplementary ma- 

erial), most of the temperature sensor data are within the band 

f the calculated temperature uncertainty. However, several ex- 

erimental data points of the sensor H1–1 are not within such a 

and of calculated temperature uncertainty for the transient pe- 

iod t > 150 days in Fig. 14 (a). A possible explanation is that the
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Fig. 15. Sensor data assessment with temperature T at positions of sensors H1–1, H1–2. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Data will be made available on request. 
xperimental data are abnormal, e.g., outliers, or indicate sensor 

ailure. 

A sensor failure detection algorithm (SFDA) is set to be a heuris- 

ic criterion, where three or more consecutive faulty data yield a 

ensor failure [50] . Using the band of calculated temperature un- 

ertainty described before, a method for the sensor data assess- 

ent can be proposed as follows: (1) faulty experimental data 

an be judged by the results of the ML-assisted modelling (bands 

f temperature uncertainty) taking into account by the influence 

f parameters uncertainties as described in Section 3.4.2 ; (2) if 

ore than 3 consecutive experimental data are detected by the 

FDA algorithm, i.e. experimental data are outside the band of 

emperature uncertainty, then these data are identified as faulty 

ata. It should be mentioned that this procedure works better for 

he smoothly changing temperature sensor data (e.g., after time 

 = 137 days, Fig. 15 ) than for the strongly increasing temperature 

ata for t < 137 days ( Fig. 15 ). 

Applying this procedure to temperature data from sensors H1–

 and H1–2 (shown in Fig. 15 ), results in the detection of 5 and 4

onsecutive faulty data at about t = 410 days, whereas other sen- 

ors nearby don’t show faulty data during this time period (see Fig. 

6 in the Supplementary Material). This example shows that the 

eveloped ML-assisted physically based 3D heat transport model 

or the FE experiment has been successfully applied to the sensor 

ata assessment, i.e., identify faulty sensor data. 

. Conclusions 

A systematical evaluation on the machine learning (ML)- 

ssisted heat transport modelling for the Full-scale Emplacement 

FE) experiment at Mont Terri Underground Laboratory (URL) 

s performed including the data preparation, model validation, 

dentifications of dominant heat transport parameters, investiga- 

ion of their uncertainties on calculated temperature evolution 

nd application to the sensor data assessment. It includes neu- 

al network (NN) based ML methods, physically based surrogate 

odel, COMSOL Multiphysics software, orthogonal test method and 

ange/variance analysis. Main conclusions are: 

(1) Data preparation including the normalization and robust NN 

methods for a raw dataset with a dimensions of 10,960 × 6 

is demonstrated. For the ML predicted saturation degree, the 

Elman NN with a Pearson’s r coefficient R of 0.9911, a mean 

squared error (MSE) of 4.62, and mean absolute error (MAE) 
21 
of 1.44 operates better than the back propagation (BP) and 

cascade BP (CBP) NN methods. 

(2) Calculation results are compared and validated with a large 

sensor dataset. During the transient condition, there are few 

abnormal values due to the sensor failures. Despite these 

few discrepancies, calculation results agree well with the ex- 

perimental dataset of 137 × 10 data points with a reasonable 

error range of 7%. 

(3) Each transient temperature evolution and corresponding 

dominant parameters at positions of 10 typical sensors are 

obtained from 32 orthogonal test cases. Together with the 

variance and range analysis, parameters such as the heater 

power, thermal conductivities of the GBM λGBM 

, the ben- 

tonite block λblock and the canister λcanister have been iden- 

tified to dominate the temperature evolution at different lo- 

cations in the near field. 

(4) Parameter uncertainty ranges of ±10% for λGBM 

and λblock 

are analysed and bands of temperature uncertainties are 

compared with temperature sensor data. This allows sen- 

sor data assessment including identification of faulty sensor 

data. 

(5) Based on the dominant parameters and parameters uncer- 

tainties, a method for the sensor data assessment is pro- 

posed. Sensor failures of the sensor H1–1, H1–2 around the 

time t = 410 days are detected with this method. 

A ML-assisted physically based 3D heat transport model is de- 

eloped and successfully applied to the FE experimental condi- 

ions. A first step in the direction of a digital twin for the FE ex-

eriment is done. Continuously incoming new data will be used to 

eed the ML-assisted physical modelling framework. Such a frame- 

ork can be applied to a DGR, help the design, optimization, mon- 

toring setup as well as the assessment of a DGR and provide de- 

ailed understandings of the performance behaviour of a DGR. 
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