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A B S T R A C T   

The application of the data-driven machine learning (DDML) for the disposal of the high-level nuclear waste 
(HLW) is of emerging interest in the recent years. This review aims to systematically elaborate, analyze, and 
summarize recent advances related to DDML in the area of disposal of the HLW. Firstly, a comprehensive work on 
the DDML for the disposal of the HLW is examined. Five DDML algorithms including the linear regression (LR), 
principle component analysis (PCA) and artificial neural network (ANN) are illustrated. Then, it summarizes the 
typical DDML algorithms and the main inputs/outputs for the deep geological repository (DGR). Furthermore, it 
is concluded that the hybrid DDML algorithms are efficient choices. Also, the DDML shows a great applicability 
for the simulation of the multiscale and multiphysics field. Lastly, the physical-informed DDML may enhance the 
performance of all algorithms.   

1. Introduction 

1.1. Disposal of High-level nuclear waste 

Nuclear energy plays an important role in addressing the global 
warming and energy supply issues (Azam et al., 2021). An increasing 
interest on the nuclear energy comes with the disposal of the nuclear 
waste (Wisnubroto et al., 2021). Commonly, classification of the nuclear 
waste commonly depends on the radioactivity level and radionuclide 
half-life (Corkhill and Hyatt, 2018). It can be categorized into the high- 
level nuclear waste (HLW), intermediate-level nuclear waste (ILW) and 
low-level nuclear waste (LLW) (Othman et al., 2019). Among them, the 
HLW has the highest radioactivity level. It requires the radioactive 
shielding as well as consideration of the reliable containment of the 
HLW (El-Samrah et al., 2021). In particular, safety and security of the 
HLW would affect the development of the nuclear industry and public 
acceptance of the nuclear energy (Kurniawan et al., 2022). Hence, extra 
attention needs to be paid to the disposal of the HLW. 

For the HLW, its disposal is quite problematic while the spent nuclear 
fuel (SNF) or reprocessing wastes is included. For instance, the radio-
nuclide 99Tc within the HLW has a half-life of around 211,100 years 
(Yamano et al., 2021). It may need to maintain the long-lived radionu-
clides isolated for 300,000 years. For the nuclear waste storage tech-
nologies, each technology including the vitrification, partitioning and 

transmutation, pyro-processing, and deep geological repository (DGR) 
has its own advantages and limitations. Moreover, the DGR provides an 
ultimate destination in a deep underground that permanently isolates 
the waste from inhabitants and the environment (Kurniawan et al., 
2022). Consequently, the DGR for the disposal of the HLW is a relatively 
favor choice worldwide (Hall et al., 2021). However, the DGR which 
consists of substantial engineered barriers and nature barriers is quite 
complex (Konevnik et al., 2020). Furthermore, the thermal–hydraulic- 
mechanical-chemical multi-physics processes usually occur in the DGR 
(De Lucia et al., 2017; Abootalebi and Siemens, 2018). In addition, the 
pore size of the porous media differs and spans orders in magnitude 
(Wang and Sun, 2018). Hence, the DGR belongs to the typical complex 
system with different time scales and space scales. Traditional numerical 
tools may lack some physical processes and are quite computational 
expensive (Laloy and Jacques, 2019). It can hardly capture all the details 
which is also not easy to be implemented (Prasianakis et al., 2020). 

1.2. Data-driven machine learning in HLW 

In the recent years, data-driven models have drawn much attention 
in many fields including the disposal of the HLW. In Fig. 1, publication 
records and citations on both the machine learning and radioactive 
waste disposal in the nuclear industry searched on the Web of Science 
are presented. As can be seen in Fig. 1, the number of publications as 
well as the citations has increased rapidly in the last 10 years, and 
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especially in the last 5 years. Combined with the machine learning (ML) 
methods, data-driven machine learning (DDML) appears to be quite 
powerful and can handle complex issues without quite much priori 
knowledge of the system (Hu et al., 2021a). 

With the development of computational technologies, DDML has the 
potential to achieve high accuracy with relatively low computational 
cost (Shastri et al., 2021). Various nuclear filed stakeholders and 
research communities adapt it to overcome difficulties including the 
fault diagnosis, condition monitoring in the nuclear industry (Laikari 
and Backman, 2021). In addition, it has been considered as a promising 
future modelling direction from the encouraging results made by the 
recent studies for the disposal of the HLW (Asher et al., 2015; Birkholzer 

et al., 2019; Chinesta et al., 2020; Menke et al., 2021). However, to the 
best of our knowledge, there still lacks research on comprehensive 
reviewing the state of the art progress on the DDML for the disposal of 
the HLW in the nuclear industry (Kurniawan et al., 2022). As a result, it 
is necessary to consolidate this issue from scattered literature as well as 
many interdisciplinary areas. 

1.3. Scope of this review 

This review paper focuses on filling the gap in the body of literature 
and reflecting the current research status of DDML for the disposal of the 
HLW. It aims to systematically elaborate, analyze, and summarize recent 
advances concerned with DDML for the disposal of the HLW. In Section 
2, algorithms of the DDML for the disposal of the HLW would be dis-
cussed, including the linear regression, principal component analysis 
and artificial neural network. Section 3 shows the applications, de-
velopments and future directions. Section 4 comes to the conclusions 
and remarks. 

2. Machine learning algorithms for disposal of high-level 
nuclear waste 

Currently, there are several ML algorithms for the disposal of HLW as 
presented in Fig. 2. On the one hand, it can be categorized into the su-
pervised learning, unsupervised learning and reinforcement learning 
algorithms by the learning type. On the other hand, it can also be clas-
sified as the regression, instance-based learning, neural network, deep 
learning, dimension reduction and kernel-based leaning algorithms by 
the algorithm type (Mahesh, 2020). As for the DDML for the disposal of 
HLW, it is an emerging direction. It needs to be described in light of the 
current state of research. 

In Fig. 3, the keyword extraction on the ML method and nuclear 
waste disposal in the nuclear industry searched on the Web of Science is 
shown. From Fig. 3, the linear regression (LR), principle component 
analysis (PCA), artificial neural network (ANN), genetic algorithm (GA) 
and clustering are the most commonly adopted algorithms for this topic. 
Consistent with Fig. 3, Table 1 presents the main algorithms with the 
DDML for the disposal of HLW. Therefore, the five algorithms mentioned 

Nomenclature 

ANN Artificial neural network 
BPNN Back propagation neural network 
BN Bayesian network 
CFD Computational fluid dynamics 
CM Clustering method 
CNN Convolutional neural network 
DBN Deep belief network 
DDML Data-drive machine learning 
DGR Deep geological repository 
DNN Deep neural network 
DQL Deep Q learning network 
DRL Dimension reduction learning 
DT Decision tree 
EL Ensemble learning 
FC Fine-grained content 
GC Gravel content 
GMDH Group method of data handling 
GPR Gaussian process regression 
Gs Specific gravity 
HLW High-level nuclear waste 
ILK Intermediate-level nuclear waste 
kNN k-nearest neighbor 

kRR Kernel ridge regression 
LLW Low-level nuclear waste 
LSTM Long-short term memory 
LR Linear regression 
WL Liquid limit 
WP Plastic limit 
MC Monte Carlo 
ML Machine learning 
NB Naive Bayes 
NN Neural network 
Wopt Optimum moisture content 
PCA Principal component analysis 
PCs Principal components 
PP Pyro-processing 
PT Partitioning and transmutation 
RBF Radial basis function 
RT Random tree 
SC Sand content 
SNF Spent nuclear fuel 
SVD Singular value decomposition 
Y Output of ANN 
ρmeasured Measured glass density, g/cm3 

ρpredicted Predicted glass density, g/cm3  

Fig. 1. Publication records and citations on the machine learning and radio-
active waste disposal in the nuclear industry searched on the Web of Science 
(The search item is ((data driven or machine learning or ML or artificial in-
telligence or AI) and (nuclear waste or nuclear waste disposal or radioactive 
waste or radioactive waste disposal or high-level radioactive waste or HLW)) in 
the topic in Web of Science). 
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Fig. 2. Detailed classifications of DDML for disposal of HLW (partially from reference (Mahesh, 2020).  
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above will be described in detail. 

2.1. Linear regression 

Firstly, the LR provides a means to model a straight line relationship 
between two variables which belongs to the supervised learning type. In 
supervised learning algorithms, the output for the given input is known. 
For example, the measured glass density ρmeasured versus predicted glass 
density ρpredicted based on the LR algorithm is shown in Fig. 4 (Trivel-
piece et al., 2020). 

In this case, the input parameter is the additivity of partial molar 
volumes of individual oxide components of the glass while the output 
parameter is the glass density. In Table 1, Gong et al. (2021) adopted it 
for the prediction of the leaching behaviors of A2B2O7-structures in the 
glass. Additionally, both the prediction of the thermal conductivity of 

bentonite (Bang et al., 2020) and dissolution behavior of borosilicate 
glasses in far-from equilibrium conditions (Neeway et al., 2018) are 
based on the LR algorithm. 

2.2. Principal component analysis 

Then, the PCA converts a large set of variables into a smaller one 
while retaining the main features of the large set (Kim et al., 2020; Wang 
et al., 2020; Tudorache et al., 2018). It is also a kind of the unsupervised 
learning type. In unsupervised learning algorithms, the output for the 
given input is unknown. 

Fig. 5 shows an illustration of the loading of the 16 hydro-chemical 
variables and scores of the 3D spaces of principle components (PCs) 
(Kim et al., 2020). In Fig. 5(a), four in-site variables (pH, temperature, 
electrical conductivity, alkalinity), four calculated variables (dissolved 
solids, CO2, HCO3

–, CO3
–) and eight major ions are considered as the input 

parameters. In Fig. 5(b), the scores of the deep groundwater samples in 
the DQR are presented with the three PCs. 

Fig. 3. Keyword extraction on the machine learning algorithm and radioactive waste disposal in the nuclear industry searched on the Web of Science.  

Table 1 
Main research on the status of the DDML for the disposal of HLW.  

Author/year Algorithms Descriptions 

(Gong et al., 2021); (Bang et al., 
2020); (Trivelpiece et al., 2020); 
(Neeway et al., 2018) 

Linear regression 
(LR) 

Supervised learning 
type 

(Kim et al., 2020); (Wang et al., 
2020); (Tudorache et al., 2018) 

Principal 
component 
analysis (PCA) 

Unsupervised learning 
type 

(Lu et al., 2021); (Sirdesai et al., 
2019); (Yoon et al., 2019) 

Artificial neural 
network (ANN) 

Supervised learning 
type 

(Solans et al., 2021); (Elodie et al., 
2020); (Tsai et al., 2019) 

Genetic algorithm 
(GA) 

Supervised or 
Unsupervised learning 
type 

(Suh et al., 2020); (Xu et al., 2020) Clustering method 
(CM) 

Unsupervised learning 
type 

(Stanfill et al., 2020); (Suh et al., 
2018) 

Logistic regression Supervised learning 
type 

(Kim et al., 2020) Deep neural 
network (DNN) 

Deep learning type 

(Bang et al., 2020) Decision tree (DT) Supervised learning 
type 

(Tosoni et al., 2019) Bayesian network 
(BN) 

Deep learning type 

(Sun et al., 2020) Support vector 
machine (SVM) 

Supervised learning 
type 

(Lu et al., 2021) Gaussian process 
regression (GPR) 

Supervised learning 
type  

Fig. 4. Linear regression (LR): measured and predicted glass density (Trivel-
piece et al., 2020). 
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2.3. Artificial neural network 

In addition, the neuron of the ANN algorithm processes the input 
data of different layers with suitable weights and biases. It is a typical 
supervised learning type algorithm. A basic mathematical formula of the 
principle of the ANN is shown in Eq. (1) (Jain et al., 1996). 

Sirdesai et al. (2019) adopted the ANN algorithm to predict the 
strength properties of the thermally treated sandstone of the DGR. Five 
input parameters including the bulk density and temperature are 
considered as the input parameters as presented in Fig. 6. It is also 
adopted to predict the nepheline precipitation from compositions (Lu 
et al., 2021) and the specific heat capacity of bentonite buffer materials 
(Yoon et al., 2019). 

Y =
∑m

j=1
Wjf (

∑n

i=1
WijXi + bi) (1)  

where Y is the output; Wj (j = 1, 2,…, m), Wij are the model parameters; 
m is the number of the hidden layers; f is the transfer function; Xi (i = 1, 
2,…, n) is the input variable; n is the number of the input variables; bi is 
the model biasness. 

2.4. Genetic algorithm 

Furthermore, for the GA algorithm, it reflects the process of the 
natural selection where the fittest individuals are selected for repro-
duction in order to produce the offspring of the next generation. Espe-
cially, it can be unsupervised/supervised learning type algorithm. 

A GA algorithm is then developed to optimize simultaneously the 
effective neutron multiplication factor keff and decay heat of the SNF 
canister as shown in Fig. 7 (Solans et al., 2021). In Fig. 7, the GA algo-
rithm ends with 10,000 iterations. Initially, the emplacement of each 
SNF is randomly determined. Afterwards, the mean value and standard 
deviation of keff change with the iterations. This algorithm is also 
adopted for the optimization of both the sensor arrangements (Elodie 
et al., 2020) and cutting plan of the SNF (Tsai et al., 2019). 

2.5. Clustering method 

For the clustering method (CM), it is an unsupervised learning al-
gorithm. It is a quite popular method which identifies the similar groups 
in a dataset. Xu et al. (Xu et al., 2020) estimated the geometric char-
acteristics of fracture traces with CM. By the way, the clustering analysis 
was also used to identify topics in nuclear waste treatment patents (Suh 
et al., 2020). 

In Fig. 8, the clustering results for the total discontinuity set using the 
CM is presented. To investigate the applicability, the CM was applied 
with totally 286 discontinuity sets. It automatically identify the most 
unpopular discrete values (marked black in Fig. 8) with the determined 
threshold value. At the same time, this paper recommends that the 
discrete values should be better removed to accelerate the simulation 
accuracy in most engineering cases. As the dataset is enough for com-
mon engineering cases, it is no need to explore the influence of the 
discrete values. 

Fig. 5. Principal component analysis (PCA): loading of 16 hydro-chemical variables and scores of 3D spaces of principle components (PCs) (Kim et al., 2020).  
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2.6. Other algorithms 

Lastly, there are also several other algorithms adopted for the 
disposal of the HLW including the logistic regression, deep neural 
network (DNN), neural network (NN) and support vector machine 
(SVM). Among them, the logistic regression and SVM are the supervised 
learning type algorithms while the DNN is a deep learning type. 

For instance, the logistic regression is applied for the modeling bi-
nary response data from a mixture experiment (Stanfill et al., 2020) and 
identification of major factors affecting nuclear decommissioning 

strategy decision (Suh et al., 2018). Kim et al. (2020) carried out the 
waste recognition system based on the DNN algorithm. Tosoni et al. 
(2019) conducted the safety assessment of nuclear waste repositories 
with the NN method. Sun et al. (2020) determined the hydraulic aper-
ture of rough rock fractures using the SVM. 

Fig. 6. Artificial neural network (ANN): using five input parameters to predict strength properties of thermally treated sandstone (Sirdesai et al., 2019).  

Fig. 7. Genetic algorithm (GA): mean value and standard deviation of keff 
change with iterations (Solans et al., 2021). 

Fig. 8. Clustering method (CM): results for total discontinuity set (Xu 
et al., 2020). 
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3. Application of DDML for disposal of high-level nuclear waste 

At present, huge achievements have been obtained for the disposal of 
the HLW with the above DDML algorithms. Hence, there is necessary to 
summarize the latest applications of the DDML in this field. Table 2 and 
Table 3 elaborate the latest applications of the DDML for the DGR and 
vitrification respectively. Table 4 summarizes the future development of 
the DDML for the disposal of the HLW. 

3.1. Latest application of DDML for DGR 

Currently, the DGR method is recognized as one of the most reliable 
methods for the long-term disposal of the HLW (Hall et al., 2021). As 
shown in Table 2, the DDML has been adopted for the DGR for the 
disposal of the HLW. 

Firstly, Jeong et al. (2018) proposed the ANN and SVM for the pre-
dictive uncertainty of subsurface models. In addition, Prasianakis et al. 
(2020) combined the NN with the geochemical reactive transport sim-
ulations. Then, Benbouras and Lefilef (Benbouras and Lefilef, 2021) 
predicted the soil compaction parameters with the DNN and RT. After-
wards, Tian et al. (2021) adopt the GA, ANN algorithm for the Perme-
ability prediction of the porous media with the computational fluid 
dynamics (CFD). Menke et al. (2021) upscaling multimodal poros-
ity–permeability relationships with the DT algorithm and Darcy–-
Brinkman–Stokes model. Moreover, the ANN algorithm is adopted for 
the prediction of both the crystallographic cell parameters (Frankel 
et al., 2021) and carbon steel corrosion product (Schmeide et al., 2021). 
Hu et al. (2021b) conducted the CFD mesh generation with the CNN. At 

Table 2 
Latest application of DDML for DGR.  

Author/ 
year 

Algorithms Descriptions Inputs and outputs 

(Jeong et al., 
2018) 

ANN, SVM Uncertainty prediction of 
subsurface models  

• Input parameters: 
matrix of data 
vectors of all prior 
models for 
observation times; 

Output 
parameters: matrix 
of data vectors of all 
prior models for 
forecast times; 

(Prasianakis 
et al., 
2020) 

NN +
Modelling 

Geochemical reactive 
transport simulations  

• Input parameters: 
master species 
concentrations of 
Sr2+, SO4

-2; 
Output 

parameters: 
saturation index of 
celestine 

(Benbouras 
and 
Lefilef, 
2021) 

DNN, RT Prediction of the soil 
compaction parameters  

• Input parameters: 
FC, SC, GC, Gs, WL, 
WP; 

Output 
parameters: Wopt, 
ρdmax 

(Tian et al., 
2021) 

GA, ANN +
Modelling 

Permeability prediction 
of porous media  

• Input parameters: 
pore structure 
parameters; 

Output 
parameters: 
permeability 

(Menke 
et al., 
2021) 

DT Upscaling multimodal 
porosity–permeability 
relationships  

• Input parameters: 
porosity of sub- 
volumes; 

Output 
parameters: 
permeability 

(Frankel 
et al., 
2021) 

ANN Prediction of the 
crystallographic cell 
parameters  

• Input parameters: 
average ionic 
radius, elements 
electronegativity; 

Output 
parameters: crystal 
channel size 

(Hu et al., 
2021b) 

CNN Mesh generation from 
rock fracture images  

• Input parameters: 
rock matrix, 
fractures; 

Output 
parameters: 
generated mesh 

(Schmeide 
et al., 
2021) 

ANN Prediction of the carbon 
steel corrosion product  

• Input parameters: 
spectral similarity; 

Output 
parameters: 
fractions, pH values 

(Solans 
et al., 
2021) 

GA Optimization of the 
canister effective neutron 
multiplication factor keff 

value and fuel decay heat  

• Input parameters: 
38 isotopic 
concentrations; 

Output 
parameters: keff, 
Decay heat 

where FC is the fine-grained content; SC is the sand content; GC is the gravel 
content; Gs is the specific gravity; WL is the liquid limit; WP is the plastic limit; 
Wopt is the optimum moisture content; ρdmax is the maximum dry density. 

Table 3 
Main research of the DDML for vitrification.  

Author/ 
year 

Algorithms Descriptions Inputs and outputs 

(Krishnan 
et al., 
2018) 

ANN Prediction of the 
dissolution rates of 
silicate glasses  

• Input parameters: 
glass composition, 
initial solution pH 
value, pH value at 
the time of 
measurement; 

Output 
parameters: SiO2 

leaching rate 
(Bishnoi 

et al., 
2019) 

GPR Prediction of Young’s 
modulus for silicate 
glasses  

• Input parameters: 
molar percentage 
composition of the 
oxide components, 
glass density; 

Output 
parameters: 
Young’s Modulus of 
the glass 
compositions 

(Hartnett 
et al., 
2019) 

RT Prediction of formable 
and thermodynamically 
stable iodine-containing 
apatites  

• Input parameters: 
13 crystal chemistry 
descriptors; 

Output 
parameters: 
categorical binary 
variable (Yes or No) 

(Lillington 
et al., 
2020) 

NN, SVM, 
GPR 

Prediction of the glass 
leaching behavior  

• Input parameters: 
17 + 13 variable 
combinations; 

Output 
parameters: 
normalized boron 
(B) release 

(Lu et al., 
2021) 

kNN, GPR, 
ANN, SVM, 
etc. 

Prediction of the 
nepheline precipitation 
from compositions  

• Input parameters: 
compositions of 332 
glasses; 

Output 
parameters: 
nepheline 
precipitation from 
glass compositions 

(Gong 
et al., 
2021) 

LR, kernel 
ridge 
regression 
(KRR) 

Prediction of leaching 
behaviors of A2B2O7- 
structures  

• Input parameters: 
30 glass 
compositions 

Output 
parameters: 
leaching behaviors 
of A2B2O7- 
structures  
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last, Solans et al. (2021) utilized the GA approach for the optimization of 
the canister effective neutron multiplication factor keff value and fuel 
decay heat. For the input and output parameters, those are described in 
detail in Table 2. 

3.2. Latest applications of DDML for vitrification 

Especially, the vitrification technique is the most preferable solution 
for immobilizing HWL of various origins (Kurniawan et al., 2022). In 
Table 3, the parameter predictions for the vitrification with various al-
gorithms are presented. 

Initially, Krishnan et al. (2018) applied the physical-informed ANN 
algorithm for the prediction of the dissolution rates of silicate glasses. 
Then, Bishnoi et al. (2019) carried out the prediction of Young’s 
modulus for silicate glasses with the GPR algorithm. Also, Hartnett et al. 
(2019) conducted the prediction of formable and thermodynamically 
stable iodine-containing apatites. Lillington et al. (2020) adopted the 
NN, SVM and GPR for the Prediction of the glass leaching behavior. It 
should be noted that there are 17 and 13 input variable combinations for 
the static and dynamic glass leaching behaviors correspondingly. Gong 
et al. (2021) conducted the leaching behaviors of A2B2O7-structures 
with the LR and kernel ridge regression (KRR) method. Finally, Lu 
et al. (2021) predicted the nepheline precipitation from compositions 
with the kNN, GPR, ANN, SVM, etc. 

3.3. Further development of DDML for disposal of HLW 

The DDML is of emerging direction for the disposal of the HLW. As 

described above, many efforts have been taken into the predictions of 
parameters of the DGR or vitrification. In particular, the future devel-
opment of the DDML for the disposal of the HLW can be concluded based 
on Table 4. 

(1) hybrid DDML algorithms. 
Firstly, the hybrid DDML algorithms are nice choices as presented 

(Lu et al., 2021; Benbouras and Lefilef, 2021; Gong et al., 2021; Bang 
et al., 2020; Lillington et al., 2020; Ebiwonjumi et al., 2021). The ac-
curacy of the DDML is related to many factors including the learning 
algorithm and model parameters. Hence, the hybrid DDML algorithms 
can yields notably improved results even with no changes in the input 
dataset. 

(2) multiscale and multiphysics simulation. 
Furthermore, the DDML shows a great superiority for the simulation 

of the multiscale and multiphysics field (Prasianakis et al., 2020; Menke 
et al., 2021; Viswanathan et al., 2022; Himanen et al., 2019). For the 
disposal of the HLW in the DGR, it belongs to a typical multiscale and 
multiphysics process. It spans from microscopic, mesoscopic, to 
macroscopic scales. Also, the thermal, hydraulic, mechanical and 
chemical processes are frequently involved. Hence, it is difficult for the 
traditional numerical calculations to overcome these issues. 

(3) physical-informed DDML. 
Finally, the DDML coupled with physical constraints, theoretical 

equations and relations can enhance the DDML performance (Solans 
et al., 2021; Tian et al., 2021; Hu et al., 2021a; Krishnan et al., 2018). 
Standard DDML algorithms lack important physics and mechanisms. 
The so-called physical-informed DDML can fill the gaps of the traditional 
DDML algorithms. Taking the physical-informed modelling into ac-
count, it is observed that the calculation results of all algorithms are 
improved. Combined with the physical-informed modelling, the 
computational accuracy of even simple models can be comparable to 
that of previous complex models. 

Compared with the traditional methods, the DDML is adoptable and 
presents new possibilities to handle the complex systems. Nevertheless, 
as a DDML, its performance largely rely on the quality and quantity of 
the dataset. For the issues of the small dataset, one option could be the 
public scientific literature or database (Karniadakis et al., 2021). 
Therefore, literatures may contain many kinds of the dataset. Another 
option may be the physical-informed DDML. Especially, the models of 
the physical-informed DDML can be effectively constrained on a lower- 
dimensional manifold and hence trained with a small data regime 
(Krems, 2019). In addition, physical-informed DDML can not only the 
interpolation, but also the extrapolation [59]. The third option could be 
the combination of the physical modelling and DDML (Prasianakis et al., 
2020). For complex computational models, traditional calculations are 
time-consuming. In case the accuracy of the model is verified, we can 
perform a few necessary calculations to obtain the data needed for the 
DDML. In this way, it is possible to combine the advantages of the 
physical computation as well as the DDML. 

4. Conclusions and future remarks 

Nuclear energy plays an important role in energy supply and sta-
bility. Moreover, safety and security of the high-level nuclear waste 
(HLW) would affect the development of the nuclear industry and public 
acceptance of the nuclear energy. In particular, the data-drive machine 
learning (DDML) for the disposal of the HLW is of emerging interest in 
the recent years. This work reviews the state-of-art DDML for the 
disposal of the HLW. The main conclusions are obtained: 

(1) Firstly, a comprehensive work on the DDML for the disposal of 
the HLW is elaborated. Five DDML algorithms including the linear 
regression (LR), principle component analysis (PCA), artificial neural 
network (ANN), genetic algorithm (GA) and clustering method (CM) are 
the most commonly adopted algorithms in this filed. 

(2) Then, applications of the DDML for the disposal of the HLW are 
described. It summarizes the typical DDML algorithms and the main 

Table 4 
Development of the DDML for the disposal of HLW.  

Author/year Characteristics Descriptions 

(Bang et al., 2020) LR, DT, SVM, EL, GPR, 
ANN, DBN 

Prediction of thermal 
conductivity model for 
compacted bentonite 

(Lillington et al., 
2020) 

NN, SVM, GPR Prediction of the glass leaching 
behavior 

(Lu et al., 2021) kNN, GPR, ANN, SVM, 
etc. 

Prediction of the nepheline 
precipitation from 
compositions 

(Gong et al., 2021) LR, kRR Prediction of the chemical 
durability of A2B2O7 
pyrochlore and fluorite 

(Benbouras and 
Lefilef, 2021) 

DNN, RT Prediction of the soil 
compaction parameters 

(Ebiwonjumi et al., 
2021) 

GPR, SVM, NN Prediction of the fuel assembly 
decay heat 

(Birkholzer et al., 
2019) ( 
Viswanathan et al., 
2022) 

ML + Multiscale and 
multiphysics field, 
fracture 

Modeling coupled THMC 
processes 

(Prasianakis et al., 
2020) 

NN based digital twin +
Multiscale and 
multiphysics field 

Neural network based on the 
results of microscopic 
geochemical reactive transport 
simulations 

(Menke et al., 2021) DT + Multiscale and 
multiphysics field 

Combination with DT from the 
pore scale to the Darcy-scale 

(Himanen et al., 
2019) 

ML + Multiscale and 
multiphysics field, 
fracture 

Acceleration of physics-based 
models by orders of magnitude 

(Krishnan et al., 
2018) 

ANN + Physical- 
informed modelling 

Prediction of the dissolution 
kinetics of silicate glasses 

(Hu et al., 2021) CNN + Physical- 
informed modelling 

Mesh generation from rock 
fracture images with CNN 

(Tian et al., 2021) GA, ANN + Physical- 
informed modelling 

Permeability prediction of 
porous media 

(Solans et al., 2021) GA + Physical-informed 
modelling 

GA is developed to optimize 
simultaneously the canister 
effective neutron 
multiplication factor keff value 
and fuel decay heat  
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inputs/outputs for the deep geological repository (DGR). Among them, 
many efforts have been taken into the predictions of parameters of the 
DGR or vitrification. 

(3) Afterwards, it is concluded that the hybrid DDML algorithms are 
nice choices. Also, the DDML presents a great superiority for the simu-
lation of the multiscale and multiphysics field due to the improved ef-
ficiency and accuracy. In addition, the physical-informed DDML can be 
effectively constrained on a lower-dimensional manifold and hence 
dealt with a small dataset. Lastly, the DDML can also cooperate with the 
physical modelling. 

Compared with the traditional numerical calculations, the DDML 
shows the superior advantage in the calculation efforts and accuracy. In 
addition, it has been considered as a promising future modelling direc-
tion from the encouraging results made by the recent studies. Therefore, 
this review which focuses on elaborating the DDML, introducing the 
applications and illustrating the further development of the disposal of 
the HLW can provide the guidance to related research as comprehensive 
as possible. 
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