

Task 2: Fuel properties characterisation and related uncertainty analysis

Ron Dagan	KIT
Dimitri Rochman	PSI
Peter Schillebeeckx	JRC Geel (co-ordinator)
Marcus Seidl	PEL
Marc Verwerft	SCK•CEN

Partners:

CIEMAT, CPST, CTU (SURAO), ENRESA, ENUSA, JRC, JSI, KIT, LEI, NAGRA, PEL, PSI, SCK•CEN, SKB, SSTC NRS, TUS, VTT, UU

ESARDA, 6 - 7 february 2020, SCK CEN Mol (BE)

Spent Nuclear Fuel (SNF) intermediate storage or final disposal

A **safe**, **secure**, **economic** and **ecological** transport, storage and final disposal requires that **SNF** is **characterised** for the main source terms of interest:

- Decay heat
- Neutron emission
- γ -ray emission
- Reactivity (burnup credit) nuclides with high neutron absorption cross section)
- Fissile material (Safeguards) i.e. ²³⁵U, ²³⁹Pu
- Specific long-lived radionuclides (Long term safety) e.g. ¹⁴C, ⁷⁹Se, ⁹⁴Nb, ⁹⁹Tc, ¹²⁹I, ²²⁶Ra

Europear

Commission

Neutron emission by SNF

PWR UO₂ pellet (5 g) $^{235}U/U = 4.8 \%$

burnup = 44 GWd/t

- S_{n,k}(t) : contribution of radionuclide k
- $S_{n,k}(t) = (s_{sf,k} + s_{\alpha n,k}) N_k(t)$
 - N_k(t) : number of nuclei of nuclide k at time t
 - s_{sf,k} : specific neutron emission rate of nuclide k due to sf
 - $s_{\alpha,k}$: specific neutron emission rate of nuclide k due to (α,n) reactions

Neutron emission by SNF

Commission

Characterisation of SNF

Main **source terms** of interest:

- Decay heat : H
- Neutron emission : S_n
- γ -ray emission : S_{γ}

Reactivity

- : ²³⁵U, ²³⁹Pu, ²⁴¹Am, Fission Products (BUC)
- Fissile material : ²³⁵U, ²³⁹Pu
- Long-term safety : e.g. ¹⁴C, ⁷⁹Se, ⁹⁴Nb, ⁹⁹Tc, ¹²⁹I, ²²⁶Ra

Contributions of nuclides with different characteristics

Difficult to be measured directly, in particular during industrial operation

e.g. decay heat by calorimetry at CLAB: accurate but long measurement times

⇒ Estimated by **theoretical calculations** using a burnup code

$(N_k(t_0), k = 1, ..., n)$: by theoretical calculations

Coupled neutron transport – nuclide depletion/creation calculation

SFC – Task 2 (structure)

SFC- Task 2: Code comparison

- CIEMAT : EVOLCODE (MCNP)
- JRC Geel : SERPENT, SCALE
- JSI : SCALE, DRAGON
- KIT : MCNP-CINDER
- NAGRA : SCALE
- PSI : CASMO
- SCK CEN : ALEPH-2 (MCNP)
- VTT : SERPENT

Sensitivity and Uncertainty (S/U) analysis

• Input data:

Nuclear Data (ND)

- Cross sections (neutron interactions)
- Fission yields
- Neutron emission probabilities
- Decay data

- Fuel History (FH)

- Fuel properties (design, composition)
 e.g. Initial enrichment (IE)
- Reactor operation and irradiation conditions e.g. Burnup (BU)
- Cooling time (CT)

BurnUp (BU): time integrated power per mass of initial fuel (MWd/kg)

 \propto total number of fission x energy per fission event

- Computational
 - Method: stochastic/deterministic
 - Model (2D/3D, boundary conditions, ...)
 - Numerical approximations (depletion time steps, depletion zones, ...)

S/U analysis: ²⁴⁴Cm production

S/U analysis: estimation of ²⁴⁴Cm inventory

$$\frac{dN_{k}}{dt} = Y N_{f} \sigma_{f} \phi + \sum_{i} \lambda_{i} N_{i} + \sum_{j} \sigma_{j} N_{j} \phi - (\lambda_{k} + \sigma_{k,a} \phi) N_{k}$$
Ref. Library Reactor Fuel BU IE ²⁴⁴Cm 24
GWd/t wt%

Rochman	ENDF/B-VII.0	PWR	UO ₂	10	4.1	18.7 %
	ENDF/B-VII.0	PWR	UO ₂	20	4.1	16.9 %
	ENDF/B-VII.0	PWR	UO ₂	30	4.1	15.5 %
	ENDF/B-VII.0	PWR	UO ₂	40	4.1	14.1 %
Zwermann	SCALE-6.1	PWR	UO ₂	40	4.1	8.5 %
Leary	ENDF/B-VII.1	PWR	UO ₂	54	3.4	9.6 %
Rochman	ENDF/B-VII.1	PWR	UO ₂	54	3.4	9.1 %
Rochman	ENDF/B-VII.1	PWR	UO ₂	40	4.1	9.7 %

²⁴⁴Cm inventory prediction production

- uncertainty due to nuclear data : ${\sim}10\%$
- due to ²⁴²Pu(n, γ), ²⁴³Am(n, γ)

- \Rightarrow Systematic study for key nuclides
- \Rightarrow Improve nuclear data
 - Input HPRL NEA/OECD
 - Input to SANDA (DG-RTD) <u>https://cordis.europa.eu/project/id/847552</u> Supplying Accurate Nuclear Data for energy and non-energy Applications

Innovative NDA methods/systems for SNF characterisation

- Innovative NDA methods to characterise pin segments
 - Validate codes (alternative to radiochemical analysis)
 - Production of a reference pellet
- NDA methods to characterise fuel assemblies (SKB-50)
 - Improve theoretical source term predictions during industrial routine operation
 Improve fuel history data: e.g. BU
 - Validate codes
- Study new detectors
 - CLYC, CVD

NDA methods to characterise pin segments

- Neutron emission rate of a SNF pin segment (collaboration SCK CEN JRC Geel, Ispra)
 - Non-destructive method to determine ²⁴⁴Cm content
 - Measurements in conventional controlled area conditions
 Hage's point model, JRC Ispra (B. Pedersen)
- Nuclide vector of SNF pin segment by NRTA (collaboration SCK CEN – JRC Geel)
 - Non-destructive; no chemical analysis
 - Absolute measurement (no calibration)
 - Measurements at **GELINA** facility of JRC Geel

ESARDA, 6 - 7 february 2020, SCK CEN Mol (BE)

Experiments at CLAB: SKB-50

Installed systems

- Calorimeter
- Gamma-ray spectroscopic scanner

Testing of advanced systems (LANL)

- Differential Die-Away Self-Interrogation (DDSI)
- Differential Die-Away (DDA)

Calorimeter at CLAB

⇒ Target value uncertainty $\leq 2\%$ ⇒ Reference instrument for decay heat of SNF

ESARDA, 6 - 7 february 2020, SCK CEN Mol (BE)

Gamma-ray spectroscopic scanning system at CLAB

Fig. 8. Count rate for the 662-keV 137Cs net peak area as a function of axial location along BWR9. These data were measured with the ORTEC GMX detector and Canberra Lynx MCA from the 45° corner. The axial location is specified as downward along the uranium containing portion of the fuel (The indicated absolute positions are accurate to \pm 10 cm, the error bars are much smaller than the data points).

Fuel assemblies: DDSI and DDA at CLAB (LANL development, NGSI)

• Differential Die Away Self-Interrogation (DDSI, passive)

A.C. Trahan, LA-UR_16_20026 Kaplan et al., NIMA 764 (2014) 347 - 351

• Differential Die Away (DDA, active) V. Henzl, LANL-UR-123025 ⇒ Optimise data analysis procedures for source term determination (not only safeguards)

Fuel assemblies: Finland

• Passive Neutron Albedo Reactivity (PNAR, NGSI)

LANL development, Tobin et al., NIMA 897 (2018) 32 - 37

Tobin et al., ESARDA bulletin 56 (2018) 12 - 18

• Passive Gamma Ray Emission Tomography (PGET)

IAEA development, Honkamaa et al., Symp. Int. Safeguards, IAEA Vienna 2014

Define/recommend validated procedures to estimate SNF source terms (including fissile material) in industrial conditions with realistic confidence limits based on:

- Best practice **industrial code**
- Realistic NDA measurements (time, industrial environment)

- EURAD project (SNF characterisation)
 - <u>https://www.ejp-eurad.eu/about-eurad</u>
 - NUGENIA, http://nugenia.org/call-for-mobility-grants-open/
- ARIEL support for open access, scientific visits, training early researchers, ...
 - www.ariel-h2020.eu
- JRC Geel open access
 - https://ec.europa.eu/jrc/en/research-facility/open-access

