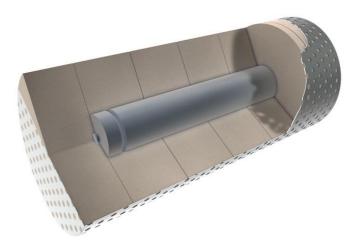


Modelling of carbon steel and **Ca-Mg bentonite boundary** development

Vaclava Havlova¹, Martin Klajmon¹, Angela Mendoza Miranda¹, David Dobrev¹, Antonin Vokal²

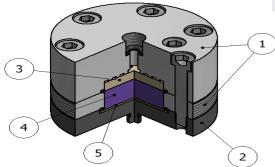
EGU2022, 23 - 27.5.2022

Introduction



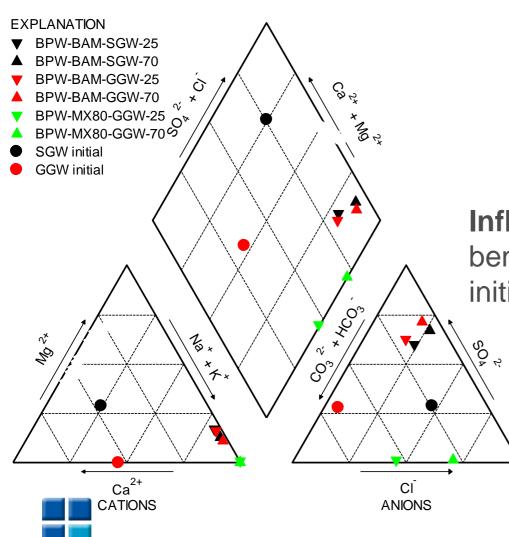
Involvement in EJP EURAD WP ACED is aimed to develop, characterize and model experiments on interactions between compacted bentonite (Ca-Mg bentonite, MX 80) and carbon steel under increased temperature

- 1. Evaluation of results of laboratory and in situ corrosion tests under increased temperature
- 2. Modelling of carbon steel/Ca-Mg bentonite interaction, concerning long term anaerobic saturated conditions (ekvilibrium and kinetic)
- 3. Development of **1D reactive transport model in PHREEQC**, looking namely in chemical evaluation of the interface, altogether with time dependent evolution of corrosion products and bentonite



Corrosion experiments to be studied

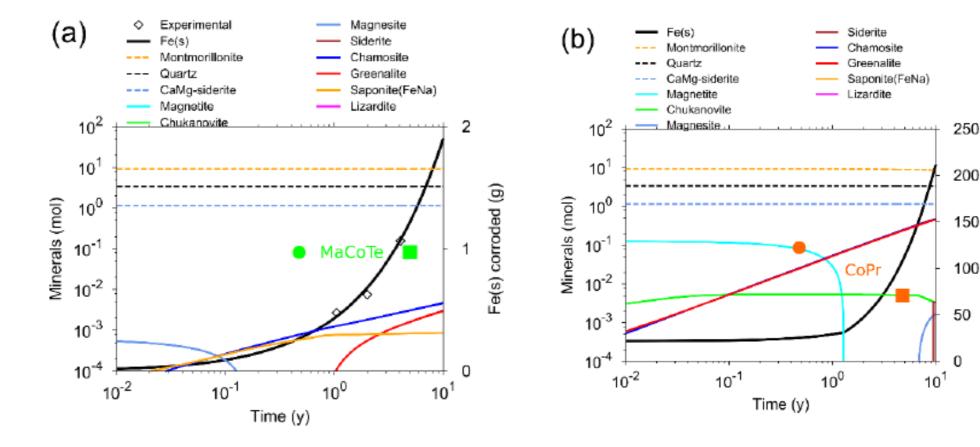
Corrosion products (CoPr) BAM SGW 25, 40, 70 Lab	ab, naerobic
MACOTE	n situ
MX80 GGW 25,70 In s	n situ
Canister development (ÚOS)BAMSGW25,70Lab Ana	ab, naerobic


- Revision and update of geochemical reactive transport model in PHREEQC (dtb Thermodem); aplication to additional systems (MX80, in situ experiment, other temperatures)
- Steps
 Equilibrium model → Kinetic model → Complex reactivetransport model
- Included processes

Chemical reaction in water; mineral dissolution/precipitation (including Fe corrosion and corrosion/alteration product formation); cation exchange; surface reaction; kineticks; transport; oxic/anoxic condition

Bentonite pore water development

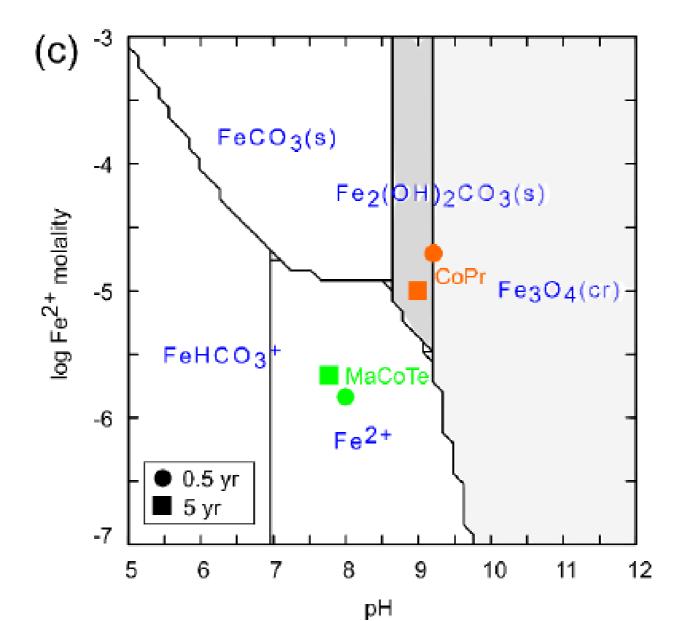
Bentonite	GW	Project(s)	t (°C)	BPW model identifier
BaM SG	0014	V CoPr, UOS	25	BPW-BAM-SGW-25
	SGW		70	BPW-BAM-SGW-70
BaM GGW		MaCaTa	25	BPW-BAM-GGW-25
	MaCoTe	70	BPW-BAM-GGW-70	
MX-80	GGW	MaCoTe	25	BPW-MX80-GGW-25
			70	BPW-MX80-GGW-70


Influence on bentonite pore water:

bentonite composition > temperature > GW initial composition

Corrosion product development (1)

Fe(s) corroded (g)


MACOTE in situ

CoPr (Fe powder included)

Corrosion product development (2)

- Bentonite composition is a leading force for development of pore water chemistry; saturation media composition is off importance
- Kinetic modelling of 3 corrosion experiments revealed importance of Fe ions concentration and pH for development of corrosion products
- Chukanovite and magnetite can develop within 10 year of experimental progress only under such a conditions
- Modelling will continue with corrosion transport modelling study, including corrosion products into the bentonite

This work has been funded from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 847593, EJP EURAD, WP ACED.

Thank you for your attention

Vaclava Havlova

ÚJV Řež, a. s.

Hlavní 130, 250 68 Husinec - Řež

Czech Republic

Tel +420 266 172 087

vaclava.havlova@ujv.cz

