
On Crack Opening Computation in Variational Phase-Field Models
for Fracture

Keita Yoshiokaa,∗, Dmitri Naumova,1, Olaf Kolditza,c

aDepartment of Environmental Informatics, Helmholtz Centre for Environmental Research – UFZ, Leipzig,
Germany

bChair of Soil Mechanics and Foundation Engineering, Technische Universitt Bergakademie Freiberg, Germany
cApplied Environmental Systems Analysis, Technische Universität Dresden, Dresden, Germany

Abstract

Phase-field models for fracture have gained exceptional popularity in the last couple of decades
and have been extended into areas well beyond brittle quasi-static fracture propagation to ductile,
dynamic, or hydraulic fracturing. Despite the significant theoretical advancements in these more
complex physical settings, little attention has been paid to the quantification of crack opening
displacement to date as most applications do not explicitly require the crack opening displacement
for the morphological evolution of cracks. However, one of the exemptions would be hydraulic
fracturing where the crack propagation is driven by the fluid pressure which strongly depends on
the crack opening displacement.

In this study, we look into two known approaches, a line integral and a level-set method, for
crack opening computation mainly from an implementation point of view. Firstly, we derive an
approximation of a discontinuous function field in the variational phase-field setting which is then
applied to obtain the crack opening (displacement jump) and verify the approximation against
a closed solution. We then propose a “certain distance from the crack” required for the level-
set function using a one-dimensional analysis. Finally, we compare these approaches under several
different conditions such as crack alignment to the mesh or under loading (asymmetric displacement
field) and investigate the convergence with respect to the mesh size.

Keywords: crack opening displacement, fracture aperture, phase-field models of fracture,
hydraulic fracturing, OpenGeoSys

1. Introduction

Phase-field models for fracture have become one of the standard numerical methods for fracture
models since its initial introduction by Bourdin et al. [12, 13] as a regularisation model for the
variational approach to fracture [23]. Their model for brittle and cohesive fracture has been further
studied by many others [4, 6, 27, 34, 42, 50, 52, 57–59, 62] including advanced numerical solution
schemes [22, 24]. In the last couple of decades, its application spans from ductile fracturing [2, 4,
35, 44] to fatigue [3, 54], desiccation fracture [16, 43], and dynamic fracturing [10, 14, 30, 41, 53].
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Unlike external load driven fracturing, hydraulic fracture propagation is induced by the fluid
pressure in crack whose geometry is then defined by the phase-field variable [1, 20, 36]. The
first extension of the phase-field model to hydraulic fracturing has been proposed by Bourdin et
al. [11] by regularising the work done by the fluid pressure within the cracks. Although in [11], the
medium is considered as non-porous elastic, it is equivalent to consider a constant pore-pressure
in an impermeable porous medium such as [48, 60, 64] in which the fluid does not leak off to the
surrounding formation. Extension to a permeable porous medium with fluid leak-off is achieved
through coupling with fluid flow models where Darcy flow in the porous medium and Reynolds flow
in the crack are applied by Mikelić et al. [47, 49] and Miehe et al. [45, 46]. As the Reynolds flow
model requires an explicit crack opening displacement, the crack normal displacement from the
vicinity of cracked elements was used in these studies [17, 45–47, 49]. In [38, 39, 51], computation
of the crack opening is obtained from a line integral originally presented by [11]. Lee et al. [40]
proposed a level-set based approach for crack opening which has been also used in [55, 65]. Some
other approaches that utilize Stokes flow instead of Reynolds flow in cracks [21, 28, 61] or simply
modify the permeability in the Darcy model [63] do not require to resolve the crack opening. Instead,
they need to explicitly identify in which domain which flow models (either Darcy or Stokes) should
be applied and rely on an indicator function based on the phase-field variable.

Because of the Reynolds flow model’s strong dependency on the crack aperture (the volumetric
flow rate is proportional to the cube of the crack aperture), accurate resolution of the crack opening
is essential. As it is reported in [19], however, crack opening computation in phase-field models is
not straightforward. The first approach proposed for quantification of crack opening displacement
(displacement jump) based the computation on the line integral utilising the gradient of the phase-
field variable and has been verified against the now classical Sneddon’s solution [56] in a quasi-static
setting [11]. While in [60], the crack normal displacement in adjacent element has been shown to
reproduce the crack opening obtained from the line integral, its justification and versatility are
unclear. A comparison of the crack opening from the line integral against the Sneddon’s solution
in [48] shows a strong mesh size dependency, which seems to have been improved in [29] with
adaptive mesh refinement. The mesh size dependency persists in another comparison by [40] using
the level-set approach. Additionally, Chukwudozie et al. [18] has pointed out that implementation
of the line integral method would require further special treatments in the identification of the crack
normal direction and removal of spurious crack tip effects.

This paper is organised as follows. Section 2 briefly describes the mathematical formulation of
the variational phase-field model for hydraulic fracturing in porous media and verifies the crack
opening approximation computed by the line integral. In Section 3, the algorithms for the two
approaches are shown. In Section 4, these two approaches are tested and compared in various
scenarios to demonstrate their capabilities of reproducing the crack opening. Finally, conclusions
are drawn in Section 5.

2. Technical background for variational phase-field models for fracture

2.1. Mechanical equilibrium

Our starting point is to consider a brittle-elastic porous medium whose constitutive law is
denoted by C and the linearised strain as e(~u) := (∇~u+∇~uT)/2 with ~u denoting the displacement.
Following Biot’s poro-elasticity [9], the effective stress is σeff := σ(~u)−αppI given the pore-pressure
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Figure 1: Brittle poro-elastic media with crack set Γ.

pp and the Biot’s coefficient of α. Then the strain energy density can be written as

W (e(~u), pp) :=
1

2
C
(

e(~u)− α

Nκ
ppI
)

:
(

e(~u)− α

Nκ
ppI
)
, (1)

where N is the dimension (N = 1, 2, or 3), and κ is the bulk modulus. With this strain energy
density at hand, the potential for the medium depicted in Fig. 1 is expressed as [11]

P(~u,Γ; pp, pf ) :=

∫
Ω\Γ

W (e(~u), pp) dV −
∫
∂ΩmN

~τ · ~udS −
∫

Γ

pf J~u · ~nΓK dS −
∫

Ω\Γ
~f · ~udV, (2)

where ~τ is the traction force, the ~f is the body force, and pf is the pressure in crack Γ. It should
be noted that the pore-pressure is considered not continuous (pp 6= pf ) on Γ.

With the consideration of crack set Γ and following the Francfort and Marigo’s variational
approach to brittle fracture [23], the total energy fo the system is given as:

F(~u,Γ; pp, pf ) = P(u,Γ; pp, pf ) +Gc

∫
Γ

dS, (3)

where Gc is the material’s critical surface energy release rate. For a quasi-static process, resolving
the displacement field reduces to minimizing F with respect to displacement ~u and crack set Γ.

Difficulties associated with the discontinuities in (3) can be alleviated through the now classical
phase-field approach [11, 12]. By introducing a phase-field variable v which smoothly ranges from 0
(fully fractured) to 1 (intact) and a regularisation length parameter `s, the regularised form of (3)
is given as:

F`s(~u, v; pp, pf ) =

∫
Ω

W (e(~u), v; pp) dV −
∫
∂NΩ

~τ · ~udS −
∫

Ω

~f · ~udV −
∫

Ω

pf ~u · ∇v dV

+
Gc
4cn

∫
Ω

(
(1− v)n

`s
+ `s|∇v|2

)
dV, (4)
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where n = 1 and n = 2 correspond to a model known as AT1 and AT2 respectively, cn is a normal-

isation parameter given by cn :=
∫ 1

0
(1 − η)n/2dη, and W (e(~u), v; pp) is a regularised strain energy

density given as:

W (e(~u), v; pp) := 1
2v

2C
(

e(~u)− α

Nκ
ppI
)

:
(

e(~u)− α

Nκ
ppI
)
. (5)

In arriving at (4) the following approximation [11, 18] is used∫
Γ

pf [[~u · ~nΓ]] dS '
∫

Ω

pf ~u · ∇v dV. (6)

Remark 1. The regularised work done by the fluid pressure within the crack set Γ can be viewed
as the body force pf∇v applied in the whole volume Ω.

Note that the main driving force for crack propagation is pf in the absence of the traction force ~τ
and that proper application of the fracture pressure pf on the crack lips relies on its resolution of
the crack normal ~nΓ by ∇v. Also, the phase-field variable v that minimises (4) is no longer bounded
in [0, 1] even for AT2 because of the fracture pressure term, pf ~u · ∇v. Thus, solving of (4) requires
a variational inequality solver, which is achieved via PETSc [7, 8] and the solution of (4) has been
implemented in the open-source finite element framework OpenGeoSys [32, 33].

Initial cracks in phase-field models1 are prescribed through the phase-field variable v by setting
its value to 0 in the corresponding elements where cracks exist. The initial profile of v does not
necessarily have a smooth profile and an optimal profile will be obtained once minimization of (4)
is achieved (see the next subsection for the optimal profile construction).

2.2. Approximation of the crack opening

We follow the construction steps of the optimal profile problem in [13, 15], which is the con-
struction of a function ω minimizing∫ ∞

0

(1− ω)n

`s
+ `s(ω

′)2 dx =:

∫ ∞
0

S(x, ω, ω′)dx, (7)

amongst all functions ω such that 0 ≤ ω(x) ≤ 1 on (0,∞), ω(0) = 0, and ω(∞) = 1. The
Euler-Lagrange equation to minimize the integral above is given by

∂S

∂ω
− d

dx

∂S

∂ω′
= −n(1− ω)n−1

`s
− 2`sω

′′. (8)

For AT1 (n = 1), we recover the well known optimal profile

ω1(x) =

1−
(

1− |ξ|
2`s

)2

, ξ ≤ 2`s

1, ξ > 2`s

(9)

1It can be defined as an explicit discontinuity if placed on the boundary. But it will be represented by the phase-
field variable once crack propagation starts and this initial setting is known to produce inaccurate onset strength
when compared to theories [31, 57].
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and for AT2 (n = 2), it is
ω2(x) = 1− e−|ξ|/`s , (10)

where ξ is the distance from crack. Now consider a line crack that lies on y = 0 in 2D (i.e. ξ = y)
and we wish to evaluate a variable φ(x, y) that includes a jump set across the crack. It can be shown

that the magnitude of a jump set may be approximated from an integral,
∫ +∞
−∞ φ(x, y)|∇v(y)|dy.

Introducing a variable ỹ = y/`s the integral becomes∫ +∞

−∞
φ(x, `sỹ)|∇v(y)|dỹ =

∫ 0

−∞
φ(x, `sỹ)|∇v(y)|dỹ +

∫ +∞

0

φ(x, `sỹ)|∇v(y)|dỹ. (11)

As `s approaches 0,∫ 0

−∞
φ(x, 0)|∇v(y)|dỹ +

∫ +∞

0

φ(x, 0)|∇v(y)|dỹ

= φ(x, 0−)

∫ 0

−∞
|∇v(y)|dỹ + φ(x, 0+)

∫ +∞

0

|∇v(y)|dỹ. (12)

Using the optimal profile of v in (9) or (10),
∫ +∞

0
|∇v(y)|dỹ = 1. Therefore, we have∫ +∞

−∞
φ(x, y)|∇v(y)|dy ≈ φ(x, 0+)− φ(x, 0−). (13)

Following this result, a normal displacement jump over the crack Γ can be estimated as

~u · ~nΓ(x, 0+)− ~u · ~nΓ(x, 0−) ≈
∫ +∞

−∞
~u · ~nΓ|∇v(y)|dy

≈
∫ +∞

−∞
~u · ∇v(y) dy, (14)

with the assumption of ~nΓ(x, 0+) = ~nΓ(x, 0−) and the approximation of ~nΓ ≈ ∇v(y)/|∇v(y)|.

2.3. Verification of the crack opening computation

The approximation method proposed in (14) is for an infinite line crack that lies on y = 0
and its tip effects are not considered in the construction above. In this subsection, the proposed
approach is tested against the well known closed form solution by [56] for a finite 2D line crack
under the internal crack pressure, p. With an initial crack Γ0 = [−a,+a]× {0} (Fig. 2), the closed
form solution for crack opening displacement is given by

u+
y (x, 0) =

2pa

E′

(
1− x2

a2

)1/2

, (15)

with E′ = E(1− ν2) where E and ν are the Young’s modulus and the Poisson’s ratio respectively.
Considering a square domain Ω = [−1,+1]× [−1,+1] with a line crack Γ0 = [−0.1,+0.1]×{0}, an
initial profile of v is specified as v = 0 for [−0.1,+0.1] × [−h/2,+h/2] accordingly where h is the
element size. Fig. 3(a) shows the initial assignment of the phase-field variable for h = 0.01, which
is the uniform quadrilateral element size in the subdomain [−0, 3,+0.3] × [−0.3,+0.3]. As can be
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Figure 2: 2D line crack (x = −a to x = a) with the half length of a under a constant pressure of p.

(a) Initial assignment of the phase-field variable (b) Computed phase-field profield

(c) Computed y-displacement (d) Computed u · ∇v

Figure 3: Line integral of u · ∇v from y = +∞ to y = −∞ performed post equilibrium computation of u and v.
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(a) AT1without effective crack length (b) AT1with effective crack length

(c) AT2without effective crack length (d) AT2with effective crack length

Figure 4: Results from line integral of u ·∇v from y = −1 to y = +1 on various mesh resolutions (a/h = 10, a/h = 17,
a/h = 33, and a/h = 100) compared against the closed form solution for AT1and AT2with and without effective crack
length adjustment.

seen in Figs. 3, the elements outside of the subdomain consists of coarse quadrilateral and triangle
elements. For a given pressure in crack (pf = 1.0) and pore-space (pp = 0.0), the mechanical
properties of E = 1.0, ν = 0.15, and Gc = 1.0, and the regularisation parameter of `s = 0.03,
displacement and phase-field variable profiles were identified by minimising (4). The computed
phase-field profile and y−displacement are shown in Figs. 3(b) and 3(c). Using (14), a line integral
of u ·∇v (Fig. 3(d)) was taken in [−1, 1] on various mesh resolutions (a/h = 10, a/h = 17, a/h = 33,
and a/h = 100) for both AT1 and AT2 models. The results are compared against the closed form
solution along [−a, a] × {0} in Figs. 4(a) and 4(c) respectively and xD represents the normalised
distance from the crack center as xD = x/a. As reported by other studies [25, 29, 40], it shows
strong dependencies on the mesh resolution especially near the crack tip and the results seem to
converge to the closed-form solution as the mesh is refined. It is known that the effective fracture
toughness in the variational phase-field setting increases by a factor that depends on the mesh size
h and the regularisation length `s and is given as [13]

Geff
c = Gc

(
h

4cn`s
+ 1

)
. (16)
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In addition, its effective crack length needs to be taken into account when cracks are represented by
the phase-field variable. The 2D line crack in consideration possesses the surface energy of 1

4Gc(2a)
which is regularised to

∫
Ω
S(x, v, v′). By equating these two energies (see Appendix for details), the

effective crack length aeff for AT1 is estimated as:

aeff = a

(
1 +

π`s
4a(3h/8`s + 1)

)
. (17)

Similarly for AT2, it is:

aeff = a

(
1 +

π`s/4

a(h/2`s + 1)

)
. (18)

The effective fracture toughness discussion can also be found in [13] and it is indeed dependent on
the ratio of the element size to the regularisation length, which indicates that the material strength
varies with the regularisation length. Thus, the fracture toughness used in computation always
needs to be adjusted corresponding to the discretisation and the regularisation lengths. While the
effective length too needs adjustment, it converges to the actual length as the regularisation length
approaches to zero. With the effective crack lengths, the obtained solutions are compared again with
the closed form solution in Figs. 4(b) and 4(d). Though some discrepancies still can be observed
near the crack tip, overall matches against the closed form solution are improved significantly. Also,
AT1 model in general provides a better match because of its finite phase-field profile. Thus in the
following we use AT1 model for our analysis unless otherwise specified.

3. Approaches for computational implementation of crack opening

The crack opening computation by taking a line integral from −∞ to +∞ in the crack normal
direction has been verified to reproduce the crack opening quite accurately in the previous section.
In practical computation, however, two issues arise in this approach; 1) there could be multiple
cracks in the path from +∞ to −∞, and 2) the crack normal direction may change along the
integration path. In order to address these issues, two different approaches are considered. The
first approach still utilizes a line integral but over a finite length [48, 51] following the local crack
normal direction [18]. The second approach is to define a level-set function to infer the crack
opening displacement from a certain point from the function [40, 65]. In this section, these two
approaches are studied and compared in various conditions.

3.1. Line integral method

The first approach presented here is nearly identical to the procedure proposed in [18] where
the line integral is carried out locally by following the local crack normal vector except for the
termination criteria and the way crack tip effects are removed.

As shown in Fig. 5, the integral follows the crack normal vector computed at element using the
gradient of the phase-field as ~nΓ,i = ∇vi/|∇vi|. Its integration discontinues either when it exits
the phase-field transition zone (vj+1 < 1) or it enters another crack’s (~nΓ,j+1 · ~nΓ,i < 0). Note that
the first exit criterion is especially important for AT2 where the phase-field profile is represented
by an exponential function. The detailed procedures are described in Algorithm 1. An example of
computed crack opening profile for an inclined crack (22.5◦ from the horizontal axis) is shown in
Fig. 6(a), which exhibits non-zero crack openings beyond the crack tips. This is because the normal
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Figure 5: Schematic of local line integral method. The integration progresses in both directions (positive and negative
crack normals along the dashed black line), starting from the reference element (highlighted in blue). The integration
terminates either when it is out of the crack transition zone (gray) or enters another crack’s regularisation region.
The participating elements are highlighted in cyan.
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(a) Crack opening profile (b) Integral of ∇vi

Figure 6: Spurious crack opening around the crack tip. The white line indicates the actual location of the crack.
The elements that are initially assigned with v = 0.0 are given with no width for illustration purpose.

direction to the crack is not clearly defined near the tip with finite discretisation. Although an
integral of ∇vi should result in ~0 if ~nΓ is orthogonal to Γ, it does not cancel out to ~0 near crack tips
due to the improper identification of the crack normal direction. Fig. 6(b) shows the magnitude of
the sum of ∇vi along the locally resolved crack normal direction. It can be observed that the sum
is close to 0 where the crack normal direction is properly identified and deviates away from 0 in the
vicinity of the crack tips, which leads to non-zero crack openings beyond the crack tips. In order
to remove this unwanted tip effects, the crack opening is multiplied by the indicator function Iw
(w′ = Iww), which is defined as:

Iw :=

{
1 if |

∑
i∇vi| ≤ δw,

0 otherwise.
(19)

where δw is a threshold for the error and 0.8 is found to be sufficient in this study. However, this
value may differ if the line integral is evaluated differently and more systematic or universal method
to estimate the threshold may be needed.

3.2. Level-Set method

The second approach studied is based on a level-set method originally proposed by [40] where
identification of the crack opening displacement is performed using a level-set function. With the
use of a linear level-set function, it is, in essence, identical to finding an equivalent displacement
at some distance away from the crack lip as applied in [46, 47]. Fig. 7 compares the displacement
profile in y-direction uy at x = 0 from the previous section’s example (Fig. 3) against the actual
displacement profile computed using a discrete crack.

As can be seen in the vicinity of the crack in Fig. 7(b), the crack opening directly obtained from
the phase-field computation at the crack lip would overestimate the actual opening displacement
because neither displacement nor stress has a clear physical definition within the regularised region.
Miehe et al. [46] suggested to read the crack normal displacement at certain characteristic length
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Algorithm 1 Crack opening computation at the element ei
1: Let vi be the element average of v and ~xi be the centroid coordinate of element ei
2: Set j = i, ~nΓ,i = ∇vi/|∇vi|, and s = sign(~nΓ,i · ~nΓ,j)
3: while vj+1 < 1 or ~nΓ,j+1 · ~nΓ,i ≥ 0 do
4: Let ~xj+1 = ~xj + s4lε~nΓ,j

5: Identify the neighbor element, ej+1, which contains xi+1

6: if ~nΓ,j+1 = 0 then
7: ~nΓ,j+1 = ~nΓ,j // Continue in the same search direction
8: else if ~nΓ,j+1 · ~nΓ,j < 0 then
9: ~nΓ,i = −~nΓ,i // Flip the search direction

10: s = sign(~nΓ,i · ~nΓ,j)

11: w = w +4lε(~uj · ∇vj + ~uj+1 · ∇vj+1)/2 // Line integral

12: Set j = i, ~nΓ,i = −∇vi/|∇vi| and s = sign(~nΓ,i · ~nΓ,j)
13: while vj+1 < 1 or ~nΓ,j+1 · ~nΓ,i ≥ 0 do
14: 4–11

(a) Computed results over the entire computation
domain

(b) Computed results near the crack

Figure 7: Comparison of computed displacement profile in y-direction from phase-field and discrete crack represen-
tations.
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(a) Crack inclination of 0◦ (b) Crack inclination of 22.5◦

Figure 8: Various level-sets drawn for cLS = 0.2, 0.4, 0.6, and 0.8.

(element size) and Wheeler et al. [60] or Mikelić et al. [47] proposed to use the displacement value
from the adjacent element. A linear level-set function proposed by Lee et al. [40] divides the domain
Ω into ”reservoir” ΩR and ”fracture” ΩF as:

ϕLS > 0 for x ∈ ΩR, ϕLS < 0 for x ∈ ΩF , ϕLS = 0 for x ∈ ΓLS , (20)

where the level-set function is defined as:

ϕLS = cLS − v, (21)

and cLS is an arbitrary constant. Once the boundary between the fracture and the reservoir domain
is delineated, the displacements in the normal direction to the level-set (~u·~nΓLS ) are used to compute
the crack opening. From any point on the crack, the normal vector to the level-set is drawn and
~u · ~nΓLS is read at both intersections with the level-set (one forms a positive angle and the other
negative) which are denoted by(~u · ~nΓLS )+ and (~u · ~nΓLS )− respectively. Then the crack opening
displacement is computed by summing the normal displacements from both sides as:2

wLS := (~u · ~nΓLS )+ + (~u · ~nΓLS )−, (22)

Fig. 8 shows the level-set lines drawn corresponding to different values of cLS .
One of the open questions with (21) is to find the constant cLS . In [40], it is suggested as

0.1, meaning that the crack normal displacement value corresponding to v = 0.1 is used as the
displacement at the crack lip, but no specific justification for this suggested value was provided. In
order to come up with an estimate for the constant, let us consider a 1D elastic rod (x = [0, 1])
with the Young’s modulus of E. A crack is defined at x = 0 and the constant fluid pressure, p, is
applied in the crack, which is regularised by the phase-field variable over the regularisation zone
(0 < x ≤ 2`s). Thus the momentum balance reads as:

2The original model in [40] does not take the sum and instead multiplies (~u · ~nΓLS )+ or (~u · ~nΓLS )−by 2 which
requires a symmetric ~u profile around the crack set Γ.
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
d

dx

(
v2 du

dx

)
+ pD

dv

dx
= 0, for 0 < x ≤ 2`s

d

dx

(
du

dx

)
= 0, for 2`s < x ≤ L

(23)

where pD = p/E and AT1 v profile:

v = 1− (1− x/2`s)2, (24)

is considered. With boundary conditions of u = 0 at x = L and that u is continuous as x = 2`s,
we arrive at the following displacement field:

u =


pD(2`s − L)− 2pD`

2
s

(
1

x
+

1

x− 4`s

)
, for 0 < x ≤ 2`s

pD(x− L), for 2`s < x ≤ L.

(25)

At the same time, we can solve the problem without the phase-field regularisation (v = 1,
∀x ∈ [0, L]) by applying the traction force explicitly at the boundary (du/dx = pD at x = 0). The
displacement profile is then given as:

u = pD(x− L). (26)

Therefore, we can obtain the crack opening displacement, u(0), as −pDL. Then from (25), we can
solve for the location xLS where the displacement value is equivalent to the crack opening as:

xLS = `s(3−
√

5). (27)

Substituting (27) into (24), the corresponding phase-field value turns out to be:

vLS =
1 +
√

5

2
− 1 ≈ 0.618. (28)

Computed crack openings from cLS = 0.618 are compared with other cLS for a/h = 100 and
`s/h = 2 in Figs 9. The errors are computed simply as a difference from the closed form solution.
For a crack with the inclination of 0◦ from the horizontal axis, though all the cases of cLS produce
reasonable crack opening displacement profiles, cLS = 0.618 results in a good overall estimate3.
Perhaps more prominent observation can be made from a crack with the inclination of 22.5◦ in
which the crack is not aligned with the underlining structural grid. Small values of cLS (e.g.
cLS = 0.1 or 0.3) produce very corrugated profiles of the crack openings. This is because the
distance from the crack for small values of cLS is more impacted by the grid as can be seen in
the level-sets in Fig. 8(b). Although this impact was not particularly considered in arriving at the
optimal cLS value, it shows that small cLS values are not favourable when cracks are not aligned
with the grid. Based on the analyses, cLS = 0.618 is used for all the subsequent analyses. The
detailed procedures for crack opening computation are described in Algorithm 2.

3As the number is derived from the 1D analysis, the argument for cLS = 0.618 will not hold if a problem deviates
from the 1D setting (e.g. near crack tip). However, throughout the examples in this study cLS = 0.618 generates a
consistently good estimate.
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(a) Crack inclination of 0◦ (b) Crack inclination of 22.5◦

Figure 9: Comparison of crack opening profiles for cLS = 0.1, 0.3, 0.618, and 0.9 to the closed form solution and the
errors.

Algorithm 2 Level-set width finding algorithm

1: Compute piecewise linear contour of the phase-field for a given level-set value using the vtk-
ContourFilter.

2: for all straight line segments ci with endpoints xi and xi+1: do
3: ~ni = R(xi+1 − xi)/|xi+1 − xi| // Normal vector of ci

4: // where R :=

[
0 −1
1 0

]
5: ~ui = ~u(xi) + ~u(xi+1) // Sum of the displacements on ci
6: wi = ~ui · ~ni // Width on ci
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4. Results and discussions

In this section, we compare the two approaches described in the previous section under various
conditions using structured quadrilateral elements. Specifically, we study the behaviours from
the two approaches with different mesh resolutions and crack inclinations against the structured
quadrilateral mesh. Additionally, we test the methods with non-uniform displacement fields and
investigate the impacts of the regularisation length.

4.1. Mesh resolution and crack inclination to the mesh

First we test the methods with a crack inclination of 0◦ from the x-axis as shown in Fig. 10(e)
with four different mesh resolutions (a/h = 10, a/h = 17, a/h = 33, and a/h = 100). The ratio of
the mesh resolution to the regularisation length is kept constant (`s/h = 3) unless otherwise stated.
Fig. 10 shows computed results using both the line integral and the level-set methods from the
four different mesh resolutions compared against the closed form solution [56]. For a/h = 10 and
a/h = 17, the computed results are slightly underestimated and more so for the level-set method
while both approaches with the resolution of a/h = 33 reproduced fairly reasonable crack opening
displacements except near the crack tips. With the resolution of a/h = 100, the crack aperture was
recovered accurately even near the crack tips.

A scenario where cracks are aligned with the computation grid is a benign case for computation
but in practice, we will not always find ourselves in such a fortunate situation for complex fracture
propagation. Thus in the following examples, we examine the two computation approaches under
two different crack inclinations of 22.5◦ and 45◦ from the horizontal axis respectively in various
mesh resolution.

Fig. 11 shows computation results from the 22.5◦ inclination which turned out to be the most
challenging in generating a smooth crack opening profile. This is because how the properties are
interpolated within an element in the current approaches for the line integral method as it suffers
from oscillations in the evaluated distance to the crack along the normal direction. Although this
effect can be alleviated by refining the mesh to some extent, a certain level of non-smoothness
was observed in all the resolution cases carried out in this study. On the other hand, the level-set
method is able to produce a smooth profile as discussed in the previous section. The opening profile
near the crack tip itself improved with mesh refinement.

Simulation results with 45◦ inclination are shown in Fig. 12. They do not exhibit non-smooth
opening profiles like the cases with 22.5◦ inclination for the line integral method. Instead, some
asymmetric bias can be seen in the low resolution case (Fig. 12(a)). As the 45◦ line crack is
discretised with structured elements, there is always one node more (or one node less) at the crack
tip either in x- or y-direction representing the crack (v = 0), which causes a slight bias to either
side of the crack in computation. However, this issue gets quickly resolved with mesh refinement
and in the high-resolution cases (Figs. 12(c) and 12(d)), the profiles were indeed computed as good
as the aligned mesh cases including near the crack tips.

4.2. Under external loading

A symmetric displacement profile around the crack Γ may hardly be the case in realistic hydraulic
fracturing situations because of the presence of other cracks, or in-situ stresses in the earth crust.
For this reason, scenarios with boundary loading are examined in this subsection. A deformed
displacement profile was induced simply by applying prescribed displacements on the boundaries
as shown in Fig. 13(d). Note that because of the asymmetric displacement field, (~u · ~nΓLS )+ is not
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(a) a/h = 10 (b) a/h = 17

(c) a/h = 33 (d) a/h = 100

(e) The profile of the crack

Figure 10: Crack opening profiles with different mesh resolution for a horizontal crack (0◦ from the horizontal axis)
and the errors compared from the closed form solution.
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(a) a/h = 10 (b) a/h = 17

(c) a/h = 33 (d) a/h = 100

(e) The profile of the crack

Figure 11: Crack opening profiles with different mesh resolution for a horizontal crack (22.5◦ from the horizontal
axis) and the errors compared from the closed form solution.
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(a) a/h = 10 (b) a/h = 17

(c) a/h = 33 (d) a/h = 100

(e) The profile of the crack

Figure 12: Crack opening profiles with different mesh resolution for a horizontal crack (45◦ from the horizontal axis)
and the errors compared from the closed form solution.
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(a) Crack inclination of 0◦ (b) Crack inclination of 22.5◦

(c) Crack inclination of 45◦ (d) Schematic of loaded domain

Figure 13: Crack opening profiles under loadings.

identical to (~u · ~nΓLS )−. Thus they need to be summed to cancel out the background displacement
field rather than multiplying (~u · ~nΓLS )+ or (~u · ~nΓLS )− by two as proposed in [40]. Computed
crack opening profiles with different inclinations and the mesh resolution of a/h = 33 are shown in
Fig. 13. Since no closed form solution is available, they were only cross-verified between the two
methods.

We can observe similarly to the previous cases that the inclination with 22.5◦ has a non-smooth
profile for the line integral method but apart from this both approaches agree very well in all the
inclinations.

4.3. Various regularisation length

We study the impacts of the regularisation length `s in this subsection. In all the previous
examples, the regularisation length was kept at a constant relative to the element size (`s/h = 3).
Fig. 14 compares the results from various regularisation lengths (`s/h = 1.5, `s/h = 2, `s/h = 4,
and `s/h = 5) while keeping the mesh resolution constant at a/h = 33 with the crack inclination of
0◦. Firstly, as suggested by (28), the threshold value is not a function of the regularisation length
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but a constant, and we can confirm that all the cases show nearly identical profiles computed from
either approach. Secondly, as the regularisation length increases, the crack presentation becomes
more diffused and obviously, it harms the reproduction of the crack opening profile especially near
the crack tip. From these computations, we can see that the regularisation length greater than 3h
would not resolve the crack opening profile well in AT1 and it should be considered as an upper
limit especially if crack opening resolution is of importance.

4.4. Critically loaded and propagating crack

Though minimisation of (4) is achieved in a quasi-static manner without a notion of “static”
or “propagating” except for an irreversible crack growth constraint4, the phase-field evolution will
start from the beginning of loading with a model such as AT2. Even with a model employed in
this study, AT1, which is equipped with the elastic limit [50], the phase-field is known to show an
“add-crack” effect near the critical loading [57]. To test the feasibility of the approaches under such
critical loading, we compare crack openings with the closed form solution using a classical hydraulic
fracture propagation problem in the toughness dominated regime without leak-off to the formation
based on Sneddon-Lowengrub solution [11, 25, 26, 37]. Considering an infinite 2D domain with a

line [−a0, a0]× {0} similar to Fig. 2, the critical volume for crack propagation is Vc :=

√
4πGca

3
0

E′ec
.

The pressure and the crack length evolutions can be obtained as:

p(V ) =


E′V

2πa2
0

V < Vc[
2E′G2

c

πV

] 1
3

V ≥ Vc,
(29)

and

a(V ) =


a0 < Vc[

2E′V 2

4πGc

] 1
3

V ≥ Vc,
(30)

Since the toughness dominated regime considers no pressure drop within the crack, the numerical
solution for pressure does not require the crack opening profile. The mass balance instead is ensured
as a constrain at each discrete time step by equating the injected fluid volume to the crack volume
as V =

∫
Ω
u · ∇v dΩ. We refer the numerical implementation details to [11, 64] and compare the

pressure and length evolutions in Fig. 15. The measure of the crack length is calculated by dividing

the regularised surface energy term computed in (4),
Gc
4cn

∫
Ω

(
(1−v)n

`s
+ `s|∇v|2

)
dV , by Gc. To

emphasize the crack evolution, the results in this section are presented without normalising by the
maximum value.

As highlighted in red in Fig. 15, we picked three time steps to verify the crack openings, which
are 1) a “pre-propagation” (V = 0.06), 2) immediately prior to propagation (V = 0.13), and 3)
“post-propagation” (V = 0.16). The crack opening displacements from the line integral and level-set
methods are compared against the closed form solution in Fig. 16 and the corresponding phase-field

4Several approaches to take into account of the irreversibility exist (see [5]). In this example, we provide it as a
constraint as vk−1 ⊂ vk with k denoting the time step.
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(a) `s/h = 1.5 (b) `s/h = 2

(c) `s/h = 4 (d) `s/h = 5

Figure 14: Crack opening profiles with various regularisation length and the errors compared to the closed form
solution.
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(a) Pressure vs. injected volume. (b) Length vs. injected volume

Figure 15: Comparison of the hydraulic fracture propagation problem between the closed form solution and the
variational phase-field model. The red circles indicate the steps where the crack opening displacements are compared.

profiles near the crack tip in Fig. 17. The numerically computed crack length from the phase-field
profile remains almost the same until the propagation but grows slightly from a(0.06) = 0.1023 to
a(0.13) = 0.1047, which can be observed in Fig. 17(b) as increase in the surface energy. Also, as
the crack size is slightly overestimated at the critically loaded step, so are the crack openings by
both approaches (Fig. 16(b)) compared to the pre-propagation step (Fig. 16(a)). Even though the
phase-field profile evolves before the propagation to its optimal profile for the theoretical critical
energy release rate [57], the evolution is confined around the crack tip and its impacts on the crack
opening profile is fairly limited. Besides this observation, both the approaches compute the crack
opening growth quite accurately at all the steps.

5. Conclusions

Despite increasing attention to phase-field models for fracture, resolution of crack opening dis-
placement has not been carefully investigated for justifiable reasons. However, since quantitative
identification of crack opening is crucial in certain applications (e.g. hydraulic fracturing), this
study focused on the quantitative verification of the two most commonly used approaches under
different scenarios that can be encountered in realistic simulations. Although the approximation
with the line integral can be shown to be theoretically robust (2.2), its actual implementation re-
quires some adaptations in crack normal computation and special treatment near the crack tips.
Thus, we have proposed a practically tractable line integral algorithm and verified it under various
different scenarios.

The other proposed method, which is based on the level-set function, lacked a robust justification
for the ad-hoc parameter required in the function. We proposed a value for the parameter to define
the level-set from the 1D elastic rod analysis and verified it under various situations together with
the line integral approach. The constant value proposed, cLS = (1+

√
5)/2−1, was tested reasonably

well for all the cases considered in this study.
Also, the impacts of regularisation length on the crack opening displacement were assessed.

Based on the computations, the regularisation length greater than 3h appeared to be non-desirable
for crack opening computation.
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(a) Pre-propagation at V = 0.06. (b) Critical point at V = 0.13.

(c) Post-propagation at V = 0.16.

Figure 16: Comparison of the hydraulic fracture propagation problem between the closed form solution and the
variational phase-field model. The red circles indicate the steps where the crack opening displacements are compared.
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(a) Phase-field profile at V = 0.06. (b) Phase-field profile at V = 0.13.

(c) Phase-field profile at V = 0.16.

Figure 17: Phase-field profiles at the pre-propagation step (V = 0.06) and the step immediately prior to propagation
V = 0.13. The contours of the phase-field variable = 0.05 are drawn to indicate the crack tips.
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Finally, the approaches presented were tested under critically loaded and propagating crack.
Despite the slight evolution of the phase-field profile at the critical load and post-propagation, both
approaches were able to compute the crack openings accurately.
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Figure 18: Decomposition of the surface integral into region A and B for the surface energy estimates.

8. Appendix

In this Appendix, we show how the effective toughness and crack length for a 2D line crack are
computed as shown in Fig. 2. The surface energy is regularised by the phase-field variable v and is
given as

∫
S
S(x, v, v′) dS and as in Fig. 18, the integral can be divided into two parts:

1

4
Gc(2a) =

1

4

∫
S

S(x, v, v′)dS

=

∫
SA

S(x, v, v′)dS +

∫
SB

S(x, v, v′)dS. (31)

8.1. AT1 case

In the region A in Fig. 18, the profiles of v and v′ for AT1 are approximated as a function of y
only as:

v(y) =



0 y <
h

2

1−
(

1− y − h/2
2`s

)2
h

2
≤ y < 2`s +

h

2

1 2`s +
h

2
≤ y,

(32)

and

v′(y) =



0 y <
h

2
1

`s

(
1− y − h/2

2`s

)
h

2
≤ y < 2`s +

h

2

0 2`s +
h

2
≤ y.

(33)
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Now the surface energy in region A is given by∫
SA

S(x, v, v′)dS =
3

8
Gc

∫ ∞
0

∫ a

0

(
1− v
`s

+ (v′)2

)
dxdy. (34)

Substituting (32) and (33) into (34) gives∫
SA

S(x, v, v′)dS =
3

8
Gca

{∫ h
2

0

1

`s
dy +

∫ 2`s+
h
2

h
2

2

`s

(
1− y − h/2

2`s

)2

dy

}

=
3

8
Gca

(
h

2`s
+

4

3

)
. (35)

In the region B, the optimal profiles are approximated as:

v(r) =

1−
(

1− r

2`s

)2

r < 2`s

1 r ≥ 2`s,

(36)

and

v′(r) =

−
1

`s

(
1− r

2`s

)
r < 2`s

0 r ≥ 2`s

(37)

where r is the distance from the crack tip, r =
√

(x− a/2)2 + y2. Then the integral over the
region B is ∫

SB

S(x, v, v′)dS =
3

8
Gc

∫ ∞
0

∫ π
2

0

(
1− v
`s

+ `s |∇v|2
)
rdrdθ

=
π

8
`sGc. (38)

Thus the surface energy can be equated as

1

4
Geff
c (2aeff) =

∫
SA

S(x, v, v′)dS +

∫
SB

S(x, v, v′)dS

=
3

8
Gca

(
h

2`s
+

3

4

)
+
π

8
`sGc (39)

Rearranging yields

Geff
c a

eff = Gc

(
3h

8`s
+ 1

)
a

(
1 +

π`s/4

a(3h/8`s + 1)

)
. (40)

Therefore, in the regularised profile, we can consider the effective fracture toughness and length as
in (16) and (17) respectively.
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8.2. AT2 case

In the region A, the profiles of v and v′ for AT2 are approximated with:

v(y) =


0 y <

h

2

1− exp

(
−y − h/2

`s

)
h

2
≤ y

(41)

v′(y) =


0 y <

h

2

− 1

`s
exp

(
−y − h/2

`s

)
h

2
≤ y

(42)

The surface energy in the region A can be similarly computed as∫
SA

S(x, d, d′)dS = Gca0

(
h

4`s
+

1

2

)
. (43)

In the region B, the optimal damage profile is similarly approximated as:

v = 1− exp

(
− r

`s

)
(44)

The surface energy in the region B is then calculated as∫
SB

S(x, v, v′)dS =
Gc
2

∫ ∞
0

∫ π
2

0

(
(1− v)2

`s
+ `s |∇v|2

)
rdrdθ

=
π

8
`sGc. (45)

By equating the energies, we have

Geff
c a

eff = Gc

(
h

2`s
+ 1

)
a

(
1 +

π`s/4

a(h/2`s + 1)

)
. (46)

Again, the regularised effective fracture toughness and length can be regarded as in (16) and (18)
respectively.
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