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Abstract

The multiscale modelling of geochemical processes requires efficient couplings between scales and physics. The use of
machine learning techniques and neural networks has the potential to systematically improve the accuracy of models at
acceptable computational costs. In this paper, we discuss an efficient framework to transfer information between multi-
physics models across spatial scales. In the first example, we train a shallow neural network based on the results of micro-
scopic geochemical reactive transport simulations, and integrate it in a Darcy-scale reactive transport code. In the second
example, we train a neural network on geochemical speciation data produced from dedicated geochemical solvers, and
adapted to the needs of a lab-on-a-chip microfluidic experiment, in order to accelerate the geochemical calculations. The reac-
tive transport simulation benchmarks show that the neural network approach performs better than the full speciation reactive
transport simulations or the look up table-based approaches, both in terms of computational efficiency and memory require-
ments. Based on these results we discuss the advantages and drawbacks of each simulation approach as well as the potential
for further development of the modelling algorithms.
� 2020 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Geochemical reactions and coupled mass- and heat-
transport are primary driving forces of geochemical pro-
cesses occurring at various subsurface systems, such as
the natural geothermal reservoirs and the technical geo-
engineering systems. The latter include deep and subsurface
geothermal energy exploitation systems, enhanced oil
recovery, carbon dioxide capture sequestration, and dis-
posal of radioactive waste. In these systems, the geochemi-
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cal equilibrium is disturbed by the contrast in chemical
composition of the injected fluids, or by the chemical dise-
quilibrium between the materials used for construction of
technical barriers and the surrounding geological
formations.

It is very common, that the geochemical equilibration
processes in such systems will result in the dissolution and
precipitation of minerals, which in turn modify the trans-
port properties of materials, such as porosity, permeability,
diffusivity, as well as the subsurface stress fields. Quantita-
tive prediction of time dependent in situ conditions in such
systems is challenging not only due to the complexity of the
chemistry and of the heterogeneous microstructure, but
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also because of non-linear coupling between processes at
very different temporal and spatial scales (Churakov and
Prasianakis, 2018). Macroscopically observed chemical
and transport phenomena are strongly related to the pro-
cesses that take place at the pore and the atomistic scale.
The diffusion of solutes and solvent is the result of the ther-
mal motion of individual molecules. Within porous media
the transport of solutes is further affected by the interaction
with the mineral surfaces, the pore connectivity and the
pore geometry (Churakov and Gimmi, 2011; Churakov
et al., 2014; Yang et al., 2019, 2020). The kinetics of mineral
dissolution and replacement reactions are controlled by the
supply of reactants to, and the removal of reaction products
from, the mineral surface and the intrinsic surface reactiv-
ity. The macroscopically measured reaction kinetics is thus
an interplay of mass transport and surface reactivity
(Kurganskaya and Churakov, 2018). Scale specific models
and simulation concepts, e.g. atomistic scale, pore level,
repository level, are well established and mature (Steefel
et al., 2015). The same holds for geochemical modeling soft-
ware tools as for example PHREEQC (Parkhurst and
Appelo, 1999) and GEMS (Kulik et al., 2013a). However,
the complexity and range of the involved scales and pro-
cesses requires multiscale and multiphysics couplings. Pre-
sently, it is not possible to incorporate all scales and
processes involved in a typical geochemical system, in a sin-
gle code. A multiscale simulation approach has to be based
on the efficient transfer of necessary information across dif-
ferent scales and across different modelling tools. This task
is in practice cumbersome, since there are no standard inter-
faces between codes or between different computer
architectures.

To obtain deeper process understanding and to elucidate
the role of couplings between distinct physical and chemical
phenomena, dedicated experiments need to be combined
with thermodynamic and reactive transport modelling.
According to the characteristic length scale, experiments
and simulations can be categorized for example into
microfluidic (Soulaine et al., 2017; Poonoosamy et al.,
2019), core scale (Molins et al., 2012; Bijeljic et al., 2013;
Gray et al., 2018), and field scale (Wersin et al., 2004;
Kosakowski and Berner, 2013; Steefel et al., 2015;
Hubbard et al., 2018). It is common that the field scale sim-
ulations (Darcy-scale) use a simplified description of the
processes that actually take place at the pore-level scale (mi-
croscale). For example, the effect of geochemical reactions
in the permeability and the diffusivity of a porous medium
is correlated to a global change of the bulk porosity in the
medium using empirical relationships. It has been demon-
strated, that smooth simplified relations are frequently
inadequate to predict accurately the temporal evolution of
the system of interest (Steefel et al., 2015). The predictabil-
ity of the models can be greatly improved after resolving
experimentally and numerically the physical phenomena
and the process mechanisms occurring at the microscale,
followed by an upscaling procedure to the Darcy-scale
(Noiriel and Daval, 2017; Deng et al., 2018; Prasianakis
et al., 2018).

A robust coupling between geochemical reactions at the
pore-level and the field scale reactive transport simulations
can be established via effective porosity–permeability corre-
lations (Molins and Knabner, 2019). Through these corre-
lations, the macroscopic code can be aware of the
underlying physics and of the effect of the geochemical reac-
tions at the pore scale, which are sensitive to the reaction
rates, the flow regimes, and the composition of the fluids.
For example, depending on chemical conditions and char-
acteristic Damköhler number, a calcite rock can be dis-
solved following a face dissolution mechanism or via
wormhole mechanism (Hoefner and Fogler, 1988; Portier
et al., 2009; Menke et al., 2016). The resulting porosity–per-
meability correlation for the same rock depends on the
reactive environment and can be greatly different
(Prasianakis et al., 2018).

For a geochemically reactive transport problem, in addi-
tion to the solution of the advective–diffusive flow field, the
chemical reactions and resulting chemical speciation at each
grid point, and at every time step have to be considered. To
resolve the transient system evolution, and depending on
the simulated physical time and the selected timestep, these
calculations at every grid point have to be repeated several
thousand times.

For realistic system descriptions, the chemical reactions
and speciation calculations are the parts of the algorithms
that consume most of the computational time, when com-
pared to the time needed for the mass transport calcula-
tions. Lately, there has been a number of efforts to
accelerate geochemical calculations, as well as the full reac-
tive transport calculations, using machine learning tech-
niques and data-driven surrogate models, especially when
sensitivity analysis are conducted (Asher et al., 2015;
Jatnieks et al., 2016; De Lucia et al., 2017; Leal et al.,
2017a, 2017b; Shen et al., 2018; Laloy and Jacques, 2019;
Guérillot and Bruyelle, 2020). Similar techniques have been
applied in the past in the field of reactive flows relevant to
combustion (Christo et al., 1996). A primary target of these
developments is the reduction of the computational over-
head for geochemical calculation, by replacing the full geo-
chemical calculations with a more compact low
dimensional data-driven model. This results in faster but
less accurate computations. In (Jatnieks et al., 2016) several
machine learning methods ranging from random forest
techniques to neural networks have been compared in a
geochemically reactive transport setup. The authors identi-
fied the neural-network based techniques as the most
promising ones. In Laloy and Jacques (2019) the authors
compare machine learning techniques for emulating full
reactive transport models, for a sensitivity analysis and
uncertainty propagation, relevant to the desorption of ura-
nium U(VI) from radionuclide contaminated sediments.
Among other, they compare the efficiency of deep neural
networks and highlight advantages and disadvantages of
different simulation strategies. In a recent work, Guérillot
and Bruyelle (2020), used also artificial neural networks,
which are trained during runtime, to calculate the geochem-
ical equilibrium instead of the actual geochemical solver.

In this paper, we use machine learning and more specific
the training of artificial neural networks, (a) for upscaling
the effect of geochemical reactions and reactive transport
occurring at the micrometer scale to the macroscopic scale,
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and (b) for accelerating geochemical calculations in a cross-
scale reactive transport model. The first example is relevant
to the calcite dissolution in low pH conditions
(Prasianakis et al., 2018). The output of fully resolved geo-
chemically reactive pore-level simulations is expressed in
terms of porosity permeability correlations and used as
input to a macroscopic reactive transport code. For that,
a single hidden layer neural network is trained and the
comparison with closed form correlations in a high reac-
tivity regime is shown. In the second example, we focus
on the modelling of a heterogeneous celestine precipitation
experiment that is conducted on a lab-on-a-chip reactor
(Poonoosamy et al., 2019). Chemical speciation during
runtime is then computed with several techniques ranging
from exact geochemical calculations to lookup tables and
to training of deep-neural networks. The accuracy and
efficiency of these techniques is assessed using a demand-
ing complex two dimensional lab-on-a-chip reactor, where
the interplay of the advective flow, the diffusive flow and
the precipitation kinetics, dictate the evolution of the geo-
chemical system.

2. METHODS

2.1. Pore-level and macroscopic modelling

The pore-level simulations applied in this work are
based on the lattice Boltzmann method (LBM). The
multi-component reactive transport model, which is used
here, has been presented in (Safi et al., 2017b; Prasianakis
et al., 2018; Curti et al., 2019). The lattice Boltzmann
method (LBM) is a special discretization of the Boltzmann
equation operating at the level of velocity probability distri-
bution functions fi, with focus on fluid dynamics and mass
and heat transport phenomena. Applications of LBM range
from diffusion dominated reactive transport simulations in
porous media (Kang et al., 2002; Heuveline and Krause,
2010; Prasianakis et al., 2013; Chopard et al., 2015; Patel
et al., 2017, 2018), to multiphase fluid dynamics of turbu-
lent flow (Succi, 2001; Chen et al., 2003). For the model
considered here, the primary solute species are transported
via advection and diffusion. The fluid advective flow field is
calculated by a single component LB model (basis fluid),
which recovers the Navier-Stokes equations at the macro-
scopic limit. The solutes are then transported by advection
and diffusion along the streamlines of the flow as passive
scalars. The isothermal guided equilibrium model is used
for the collision process (Prasianakis et al., 2017; Molins
et al., 2020). This model provides enhanced Galilean invari-
ance and rotational isotropy on the standard two-
dimension nine velocity (D2Q9) and three dimension
twenty-seven velocity lattices (D3Q27) (Prasianakis and
Karlin, 2008; Prasianakis et al., 2009). Some strengths of
the LBM, which are not exclusive for this method, for reac-
tive transport geochemical applications are the ability to
simulate evolving geometries of high complexity (due to dis-
solution or precipitation), the local mass and momentum
conservation, as well as the parallelization efficiency. The
high scalability of LBM codes is related to the locality of
operations of the mesh based particle–particle interactions,
and the requirement of only next neighbor communication
between the grid points during the streaming step. Macro-
scopic simulations of flow and mass transport at Darcy-
scale were performed with the MCOTAC (Modular Cou-
pling Of Transport And Chemistry) code. The coupling of
solutes and transport along with the geochemical interac-
tions is implemented using the sequential operator splitting
approach. The code uses the law of mass action to calculate
the aqueous speciation and the thermodynamic or kinetic
equilibrium with single component solid phases. The diffu-
sive transport of aqueous species is implemented using a
random walk simulation algorithm. The changes in the per-
meability and diffusivity of the porous media due to the
changes of porosity related to dissolution and precipitation
of minerals are taken into account via effective Archie and
Kozeny-Carman relations (Montoya et al., 2020; Pfingsten,
2002; Jakob et al., 2009).

Both numerical solvers have also participated in numer-
ical benchmark exercises together with several state-of-the-
art geochemically reactive transport codes (Montoya et al.,
2020; Molins et al., 2020). The methodologies presented
here are not restricted to the lattice Boltzmann and MCO-
TAC codes, but are in principle applicable to any combina-
tion of codes with similar functionality.

2.2. Thermodynamic speciation and LMA solver

Major computational efforts in reactive transport simu-
lations are related to the calculations of thermodynamic
equilibrium and the geochemical speciation. The reason
for that is the large number of involved species, and the
need to perform chemical calculations at each mesh point
and every time step. Geochemical speciation calculations
are used to find the quantities of chemical species in the sys-
tem under the assumption of local equilibrium. This type of
calculations can be done using the Law of Mass Action
(LMA) (as in PhreeqC (Parkhurst, 1995)) or Gibbs Energy
Minimization (GEM) (as in GEMS-Selektor). In a reactive
transport code, reactions and mass transport are usually
coupled in three main ways: by directly implementing the
chemical speciation routines within the code (Xu et al.,
2011), by using a pre-calculated look-up table that contains
speciation calculations (Huang et al., 2018; Poonoosamy
et al., 2019), or for more complex chemical systems by cou-
pling the mass transport code to an external geochemical
software (Kosakowski and Watanabe, 2014; Patel et al.,
2017). The look-up table approach is in general faster but
requires the pre-calculation of the full geochemical system,
and the accuracy depends on the resolution of the table. On
the other hand a direct calculation solving the chemical sys-
tem will give an exact result, but it will be slower. For the
second example presented in this paper, an exact LMA sol-
ver tailored for geochemical system of interest was embed-
ded into the LBM code, and was used to obtain the exact
fluid speciation at each time step of the reactive transport
simulations.

The Law of Mass Action (LMA) simply states that the
rate of chemical reaction is directly proportional to the pro-
duct of the activities of the reactants raised to the power of
their stoichiometric coefficients. At chemical equilibrium,
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the LMA transfers to equilibrium constant (Keq) equa-
tions, given by:

Ki ¼
Yn

j¼1
ctijj ctijj ð1Þ

where Ki is the equilibrium constant of ith reaction, tij is the
stochiemetric coefficient of jth species in ith reaction (posi-
tive for products and negative for reactants), cj is the con-
centration of jth species, n is the total number of species,
and cjis the activity coefficient of jth species, calculated in

the exact LMA implementation using the Davies equation,
given by;

log10cj ¼ �AZ2
j

ffiffi
I

p

1þ ffiffi
I

p � 0:3I
� �

ð2Þ

where A is a temperature dependent constant equals to
0.5114 at 25 �C and 1 bar, I is the ionic strength. To achieve
closure of the system of equations, the LMA equations are
complemented by Mass Balance (MB) equations. Table 1
lists the chemical system along with its LMA and MB equa-
tions, where square brackets are for concentrations and
curly brackets for the activities.

For a given aqueous speciation, the saturation index of
celestine mineral is calculated using;

SIcelestine ¼ log10
Srþ2

� �fSO�2
4 g

Ksp
ð3Þ

where Srþ2
� �

and fSO�2
4 g are the activities of strontium

and sulphate ions respectively and Ksp is the solubility pro-
duct constant of celestine.

The speciation calculations with the exact LMA solver
were first validated against the open-source GEM-
Selektor V3.4.2. (Kulik et al., 2013a). GEM-Selektor is a
geochemical modeling software that uses Gibbs Energy
Minimization to model various geochemical processes,
including batch speciation calculations. The agreement
between the LMA solver and GEMS geochemical specia-
tion was excellent for the whole range of concentrations.

2.3. Artificial neural networks

Artificial neural networks (NN) are computational mod-
els that can represent complex relationships between input
Table 1
List of primary and secondary species along with its corresponding law
System.

Primary Species Secondary Species

1. Srtotal 1. Sr2+

2. Stotal 2. SO4
2�

3. Natotal 3. SrSO4(aq)

4. Cltotal 4. NaSO4
�

5. Na+

6. Cl�
and output data in multidimensional spaces (Jain et al.,
1996). Different NN’s types are assembled to exhibit specific
behavior depending on their architecture, and the type of
the problem to be solved. The main challenge of machine
learning algorithms is to sufficiently train a NN using an
existing training set of input and output data, such that
the NN can be used to forecast accurate output values for
data that do not belong to the training dataset. At the same
time, it should be noted that a trained NN is not a direct
human interpretable object, because of its high complexity
compared, for example, with polynomial closed form
expressions. Moreover, there is no optimum predefined
number of neurons or an a-priori guarantee that a trained
NN with a specific number of neurons can predict the out-
put with the desired accuracy.

The feedforward type of neural networks are used in this
study. This is one of the simplest but most efficient network
type, suitable for solving complex regression problems. In
this study the neural networks were trained using a super-
vised learning approach in order to: (a) transfer effective
simulation parameters between microscopic and macro-
scopic simulations codes, and (b) approximate the exact
geochemical speciation algorithms.

The neural network used for the approximation of geo-
chemical speciation is depicted in Fig. 1. This network con-
sists of an input, an output and two hidden layers
composed by eight neurons per layer. For this example,
the network accepts two variables as input, which are the
master chemical species of interest and one variable as out-
put, which is the resulting saturation index. A layer in the
NN is capable of solving the following expression:

y ¼ aðwxþ bÞ ð4Þ
where x is the input matrix, w are the weights, b are biases,
y is the calculated target vector and a is the activation or
transfer function. For the output layer, a = 1, while for a
hidden layer, a is equal to a function like e.g. the logistic
or the tanh function. Thus, one or more hidden layers
enable the nonlinear regression of the NN. For this specific
example where we have two hidden layers in addition to the
default output layer, y is calculated as follows:

y ¼ a3ðw3 � a2ðw2 � a1 w1 � xþ b1
� �þ b2Þ þ b3Þ ð5Þ
of mass action and mass balance equations for a SrCl2–Na2SO4

LMA and MB Equations

1. Sr2+ + SO4
2� M SrSO4(aq)

Keq1 = {SrSO4(aq)}/{Sr
2+}{SO4

2�} (LMA.1)

2. Na+ + SO4
2� M NaSO4

�

Keq2 = {NaSO4
�}/{Na+}{SO4

2�} (LMA.2)

3. Srtotal = [Sr2+] + [SrSO4(aq)] (MB.1)

4. Stotal = [SO4
2�] + [NaSO4

�] + [SrSO4(aq)] (MB.2)

5. Natotal = [Na2+] + [NaSO4
�] (MB.3)

6. Cltotal = [Cl�] (MB.4)



Fig. 1. Visualization of the feedforward neural network used for
the geochemical speciation example. This NN has two hidden
layers composed by eight neurons per layer. This NN accepts two
variables as input (e.g. master species concentrations C1 = [Sr2+]
and C2 = [SO4

2�] and predicts one variable Y1 (the saturation index
of celestine) as output.
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The superscripts 1 and 2 correspond to the hidden lay-
ers, while 3 denotes the output layer, which means a3 = 1.
For a1 and a2, the activation function tanh was chosen,
which means e.g. for the first layer

a1 w1 � xþ b1
� � ¼ ew

1�xþb1 � e�ðw1�xþb1Þ
	 

ew1�xþb1 þ e�ðw1�xþb1Þ� � ð6Þ

Each neuron in a layer of a neural network can be seen
as a pair of weights w and a bias b, whose values are deter-
mined during the training of the NN. The number of
weights per neuron corresponds to the number of rows in
x. In a layer, b corresponds to a vector whose size is equal
to the number of neurons, while w is a matrix whose size is
determined by the number of neurons and either the dimen-
sion of the input or the number of neurons in the previous
layer. Among several choices, the training of the networks
was conducted using the Neural Network ToolboxTM of
MATLAB. It is noted that other alternative highly efficient
open-source libraries can also be used, especially when the
training process needs to be automated and has to occur
during runtime in high performance computing clusters
(Abadi et al., 2016).

At the beginning of the training, w and b are set to zero
or random numbers, therefore after one training run
(epoch) the predicted vector y and the true data t will be
quite different. This difference is estimated via a mean
squared error loss function

L ¼ 1

n

Xn

i¼1

ðti � yiÞ2 ð7Þ

where n is the total number of data points. Target of the
training is the minimization of L, which will result in the
lowest possible error of y compared to t. The NN training
is using the backpropagation technique introduced by
Rumelhart et al. (1986). In this method each weight w
and bias b in the network is adjusted by calculating the par-
tial derivative of L with w and b after each epoch.
The neural networks in this work were trained with the
following procedure: The full data was randomly split into
training, validation and testing with ratios of 70%, 15% and
15%, respectively. During training, the neural network
adapts its parameters (weights and biases) only based on
the training data. The validation data serves as a restriction
to ensure that the NN can generalise well (i.e. it is able to
reproduce unknown data) while the testing data is an addi-
tional independent dataset to control the quality of the neu-
ral network. The right balance between the size of the
network and its resulting accuracy was pursued. For that,
several networks were tested, by varying the number of neu-
rons per hidden layer, the number of hidden layers and the
activation functions of the neurons. Moreover, several
training algorithms were tested. For datasets at hand, the
best performing algorithm was found to be the one based
on the Bayesian Regularization (see e.g. Mackay, 1992).
Bayesian regularization enables smart adaption of regular-
izing parameters during training (Burden and Winkler,
2008; Kayri, 2016). To obtain a trained neural network
with good generalization (low validation error), early stop-
ping was used during training, which means that training
stopped after the validation loss stopped decreasing. We
note that a common issue in this type of networks is the ele-
ment mass conservation between input and output of the
networks, which cannot be guaranteed and which at the
moment is source of uncertainty (Jatnieks et al., 2016;
Guérillot and Bruyelle, 2020). For the example in Sec-
tion 3.2, the mass conservation is guaranteed at the level
of the multicomponent lattice Boltzmann implementation.
While the SI is the driving force of precipitation small inac-
curacies have no effect in mass conservation.
2.4. Lab-on-a-chip experiments

Lab-on-a-chip microfluidic reactive transport experi-
ments have the potential to miniaturize several types of cen-
timeter to meter laboratory experiments for several
scientific disciplines. Some of the advantages of these
microscale experiments are the requirements of small
amount of reactants, the observation of processes occurring
within confined micrometer size pores and interfaces, and
the possibility of conducting several parallel experiments
using only one chip (Song et al., 2014; Li et al., 2018;
Soulaine et al., 2018; Poonoosamy et al., 2019). However,
at the same time, the monitoring and control of the exper-
iment becomes more complex and very sensitive to the
setup and flow conditions. Moreover, the accurate interpre-
tation of results requires local information that cannot be
easily obtained via pure experimental techniques. Such
information is the local flow velocities, the local chemical
composition, the speciation, and the saturation index, at
every location within the microchip and most importantly
at the crystal-fluid interface. These quantities can be
retrieved via complementary numerical diagnostics based
on reactive transport modelling. Here, the experiment pre-
sented in (Poonoosamy et al., 2019) is considered as a test
case for the simulations. The experiment is characterized
by advective and diffusive mass transport, while the chem-
ical reactions lead to strontium sulphate precipitation,
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which alters the flow and the mass transport pathways. The
experiment was designed to study the effects of solution
supersaturation and flow conditions on mineral growth in
confined spaces by using a simple chemistry and well-
controlled chemical boundary conditions. The experimental
setup, (chip depicted in Fig. 2a) consisted of a microfluidic
reactor with two parallel supply channels of 77 mm width
and 10 mm depth that were connected via fifty mixing cham-
bers. The dimension of the mixing chambers were 60 mm
length, 77 mm width and 1 mm depth. In the middle of the
mixing chambers, pillars were placed with a distance of
600 nm apart from each other. The chip was fabricated
using conventional PDMS (polydimethylsiloxane) on glass
technique (Gruenberger et al., 2013). Equimolar (10 mM)
solutions of SrCl2 and Na2SO4 were injected at inlet 1 and
2, respectively, at a constant flow rate of 1000 nL min�1.
The advective and diffusive transport of the reacting solutes
in the chambers triggered the precipitation of strontium sul-
phate (SrSO4). The reactions in the chambers were moni-
Fig. 2. (a) Schematic representation of the microchip experimental setup r
evolution in the mixing chamber (chamber number 4 from the inlet).
tored using optical microscopy. Fig. 2b shows four distinct
processes observed subsequently in the mixing chamber:
nucleation and appearance of the first crystallite, growth
of crystals, clogging at the pillars and dissolution of the
SrSO4 crystals. The formation of the first crystallites
occurred preferentially close to the middle of the reaction
chambers, in the region of high super saturation. SrSO4

nuclei grew forming flat euhedral rhombohedral crystals,
intergrowing the pillars of the reactor chambers, and retain-
ing the crystallographic orientation of the initial crystal. At
the later stages, the growth of the SrSO4 crystals was greatly
affected by the local flow and mass transport conditions.
The evolution of the system resulted in a complete clogging
of the chamber obstructing the transport pathways between
the upper compartment and lower compartment. As a
result, the saturation dropped leading to a decrease in
growth, followed by dissolution of the celestine crystals.
The snapshot at T = 560 min is considered as the starting
point for the simulations of the second test case.
eported in (Poonoosamy et al., 2019) and (b) the observed temporal
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3. RESULTS

3.1. Transferring knowledge across the scales: effect of

geochemical reactions on transport properties of porous

materials

In macroscopic Darcy-scale models, the simulation
domain is divided into grid cells that are equal to or larger
than the ‘‘Representative Elementary Volume” (REV),
defined as the minimum volume in which the physical
parameters (pressure, density, porosity, etc.) are representa-
tive of the whole domain (Bear, 2013). Inside this REV,
each phase is treated as a single continuum exhibiting prop-
erties that represent the statistical average of each macro-
scopic property within this volume. This averaging
concept of the macroscopic scale models is double edged.
While it allows modeling on large spatial scales with reason-
able computational resources, it is insensitive to any micro
scale changes that occur due to geochemical reactions,
within the averaged grid cell.

Examples of these micro-scale changes due to geochem-
ical reactions are the evolution of the pore network struc-
ture as a result of mineral precipitation and dissolution.
The Darcy-scale models try to account for these reaction
driven micro-scale changes by empirical relationships
(Steefel et al., 2015) or coupling with lower scales models
(Panga et al., 2005). For example, changes in the rock
petrophysical properties such as permeability, reactive sur-
face area, and diffusivity are assumed to be a function of
porosity using empirical relationships such as Kozeny-
Carman, power laws, and Archie’s law. However, these
empirical relationships tend to fail with increased chemical,
mineralogical, and petrophysical heterogeneity due to the
high non-linearity of the underlying microscopic reaction
processes.

In microscopic models with explicit description of the
pore structure and the reactive surfaces, the computational
grid cells (or in this context, voxels) are no longer represen-
tative cells, and are explicitly defined as either rock- or
pore- space. As a result of such a definition, the macro-
scopic properties of the rock such as the porosity, the per-
meability, and the effective diffusivity are not appearing in
the mass transport and flow equations. At the same time
some other parameters like the reactive surface area can
be directly calculated from the explicitly resolved pore
structure. Therefore, the reactive transport simulations at
the microscopic pore-scale have the potential to elucidate
the underlying mechanisms as well as to provide macro-
scopic codes with improved functions and relationships
(Prasianakis et al., 2018). The main challenge in applying
geochemically reactive transport models on realistic 3D
porous geometries, is that such geometries require very fine
discretization of the simulation domain, in order to resolve
large and small pore-structures and their related reactive
surfaces. If the geometry is composed from X-ray tomo-
grams, it may result in computational domains with a very
large number of voxels (>109) and massive computational
costs. This limits the application of micrometer reactive
transport models to small scale reactive transport experi-
ments. However, at this level it is possible to describe very
interesting physical and geochemical mechanisms at very
high resolution.

In Prasianakis et al. (2018) the result of geochemical
reactions on the microstructure evolution of reacting por-
ous media has been investigated via pore scale lattice Boltz-
mann simulations. The modelled system was represented by
a calcite rock which was dissolved because of the injection
of an acidic fluid. Simulations were conducted using com-
puter generated synthetic pore maps, which were con-
structed based on the Voronoi tessellation method.

The coupling between flow conditions and reactivity at
the pore-level is rationalized in terms of dimensionless
parameters, such as the Peclet (Pe = UL/D), the Damköh-
ler (Da = kL/D), and the Reynolds (Re = UL/v) numbers,
where U is the convective flow velocity, L is the character-
istic spatial dimension, D is the mass diffusivity, k is the
reaction constant, and v is the kinematic viscosity of the
fluid. These dimensionless numbers describe the interplay
and significance of different geochemical and physical pro-
cesses for a given system.

Depending on the reactant concentration and the flow
rate, which results in different Pe, Da, and Re numbers,
the geochemical reactions on the calcite rock led to distinct
dissolution evolution paths. Different dissolution mecha-
nisms were observed that ranged from face dissolution to
wormhole formation. Different evolution paths resulted in
different values of permeability for the same total dissolved
calcite. Moreover, it was shown that in several cases the
effective transport properties of the system significantly
deviated from the typical Kozeny-Carman type of poros-
ity–permeability correlations, which are usually used in
macroscopic reactive transport codes. In Fig. 3 the pore
level microscopic results are depicted for the case of
Pe = 400 for initial porosity of e = 0.39, which resulted in
wormhole formation (Prasianakis et al., 2018). The Peclet
number for the microscopic simulations is calculated by
using the initial inflow velocity of the solution, the molecu-
lar diffusivity of the injected acid, and the characteristic
length scale of the considered rock sample. We note that
the Peclet definition at the pore-scale is different from the
grid Peclet number used in macroscopic description, where
the inflow velocity is correlated to the hydrodynamics dis-
persion coefficient (instead of only the molecular diffusion)
and the dimension of the grid cell size (instead of character-
istic length scale). After exhaustive search for a closed form
fit, it was not possible to describe the underlying flow and
dissolution processes with a single correlation, and there-
fore two correlations of permeability K, of the form

K ¼ a � eb were adopted, namely:

K ¼ 4:21 � 10�17 � e2:4 for porosity < 0:436 ðmild regimeÞ
ð8Þ

K ¼ 4:89 � 10�13 � e13:7 for 0:436 < porosity < 0:48 ðstrong regimeÞ
ð9Þ

These correlations are also plotted in Fig. 3 (left). The
dataset produced from the pore-level detailed simulations
was used as the input training data set for the neural net-
work depicted in Fig. 3 (right). The selected neural network
is a shallow network and includes one hidden layer with five



Fig. 3. (left) result of geochemical reactions on transport properties of porous media expressed as porosity permeability correlations. Circles
represent the detailed pore-level lattice Boltzmann reactive transport simulations. The black line shows the trained neural network output. The
blue (mild regime) and red (strong regime) lines represent the best two-step fit using closed form polynomial expressions of the type K ¼ a � eb.
(right). Topology of the shallow neural network (1 hidden layer, 5 neurons) which is trained using the pore level simulation dataset. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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neurons. After the NN learning phase, the trained network
was integrated in the macroscopic reactive transport code.
The NN is capturing with excellent accuracy the trend of
the permeability variation due to calcite dissolution. This
is expected since a NN is a more complex mathematical
model compared to the correlations of Eqs. (8) and (9).
The same network architecture is also capable of capturing
the trends resulting from the face dissolution mechanism.

The obtained knowledge of the phenomena that occur at
the microscale can be further transferred to the macro-
scopic code, expressed as porosity permeability correla-
tions. These correlations enclose the characteristic
evolution of the rock properties due to geochemical reac-
tions and mass transport. Here, we propose an alternative
method based on neural networks, since the procedure of
training can be fully automated within one and the same
algorithm.

For the upscaling, the dissolution of calcite rock at the
macroscopic scale is considered. The neural network was
embedded into the macroscopic reactive transport code
MCOTAC as a C function (also provided in the supple-
mentary material file: porosity_permeability_NN_func
tion.c ) which could be used instead of a Kozeny-
Carman or a power law porosity–permeability relation-
ship. The MCOTAC code includes mineral precipitation
and dissolution reactions, which yield porosity changes
and related permeability and dispersivity/diffusivity
changes. Different porosity–permeability relationships, as
for example, simple Kozeny-Carman equation, polynomial
equations or NN learned functions could be included via
simple equations or functions calls. It is noted that neural
network models are very robust and can be easily included
into transport codes as embedded routine or external
stand-alone library, which are not dependent on third-
party libraries or on code packages. The discretization
of the macroscopic simulation domain was on the cm scale
(from sub-micrometer at the pore-level scale), and the time
scale is minutes and hours (from fractions of microseconds
at the pore-level).

For the simulations, the boundary conditions were set
similar to the conditions that resulted in the wormhole for-
mation at the microscopic scale. The constant inflow condi-
tion (10�3 m/s) was used to fix a constant hydraulic head
(h) boundary condition along the 1 meter long macroscopic
model domain. For the outflow boundary condition (right)
an infinite boundary condition is assumed along with a glo-
bal hydraulic gradient which does not change with time.
Therefore, the flow velocity v can be calculated from Darcy
equation (Eq. (10)) for different 1D discretized model ele-
ments xi:

vi ¼ v
*

Di=ei ¼ �ki=ei � grad h ð10Þ
where vDi is the Darcy velocity and ki is the hydraulic con-
ductivity, which is connected to the permeability Ki

through the following relationship: ki= Kig/ v, where g is
the gravitational acceleration and v is the kinematic viscos-
ity of the fluid.

The calcite dissolution caused by the injection of HCl
acid of 0.01 M (pH = 2) was modelled by an equilibrium
dissolution reaction, i.e. the fastest dissolution rate for cal-
cite, according to the following reaction mechanism

CaCO3 þ Hþ ! Ca2þ þ HCO�
3 ; logKs ¼ �1:84 ð11Þ

where log Ks is the solubility product constant. Pore water
and calcite were initially set in equilibrium along the 1D
model domain. The inflow of the HCl acid at the left
boundary is reacting with the calcite causing its dissolution,
and resulting in the alteration of the local porosity and per-
meability. Initial porosity was set to e = 0.39 for all discrete
elements.

For the simulations the two permeability-porosity power
law correlations shown in Fig. 3, have been used. The first



Fig. 4. Upscaling of the results of microscopic reactive transport
simulations to macroscopic scale. Injection of HCL acid and calcite
porosity distribution at different times along the model domain
(100 grid cells). Two different permeability-porosity laws imple-
mented in the macroscopic code (blue), and compared to the neural
network approach (magenta). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web
version of this article.)
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correlation was applied for porosities less than e = 0.436
(Eq. (8)) and the second correlation for porosities in the
range 0.436 < e < 0.48 (Eq. (9)). For porosities >0.48, an
upper limit in permeability was used. The maximum perme-
ability was defined which is equal to the permeability calcu-
lated for the porosity of e = 0.48. For simulations that
implemented a neural network, the trained neural network
model was used for porosities 0.39 < e < 0.48, and the same
upper permeability limit for porosities >0.48, as used in the
correlation based simulations. An equidistant grid was
used, resulting to 100 internal domain grid cells (0.01 m cell
size). Simulation results are shown Fig. 4. There is excellent
agreement between the power laws and the neural network
model implementations. At 27.2 h, half of the calcite rock is
dissolved. After 55 hours of reaction time the entire calcite
domain is dissolved. Different grid sizes were also tested
Fig. 5. Visualization of the flow field within the microfluidic
chamber. Arrows depict the flow velocities and their relative
magnitude. Reactants are transported at the fluid-crystal interface
via advection and diffusion.
yielding very similar results. It is concluded that both
methodologies can be used for transferring information
across scales. Each methodology has its own advantages
and drawbacks as described in the discussion section.

3.2. Accelerated cross-scale microfluidic simulation

The evolution of the lab-on-a-chip experiment presented
in the Methods section is a result of several competing pro-
cesses. In Fig. 5, a snapshot of the experiment at
T = 560 min is depicted, along with the numerically
resolved snapshot flow field (See Fig. 2b for the temporal
evolution of the experiment). The velocity vectors indicate
the local magnitude and direction of the flow at every point
of the domain obtained by the cross scale LB solver. The
multicomponent flow solver includes also a classical nucle-
ation theory (CNT) implementation from which the induc-
tion time (time needed for the initiation of precipitation)
and reactive surface areas are calculated (Prasianakis
et al., 2017). Exact details of the calculation of the flow field
within the chip have been presented in Poonoosamy et al.
(2019). The reactants Na2SO4 and SrCl2 enter from the left
side of the domain (top and bottom) and are transported by
advection and diffusion towards the pillar-zone in the mid-
dle of the chamber (see Fig. 9). At a certain distance from
the pillar-zone, and depending on the crystal orientation
and crystal extent, diffusion becomes the dominant trans-
port mechanism. Reactants and products are carried away
back to the channel, and exit the chamber from the right
side. The mixing extends within the whole microfluidic
chamber and results in a high contrast of the local species
concentrations. In certain locations of the chamber, when
the solubility limits are exceeded, and upon availability of
appropriate substrate the celestine precipitation takes place.
The kinetics of precipitation reaction dn/dt [mol s�1] can be
described by:

SrCl2 aqð Þ þ Na2SO4 aqð Þ ! SrSO4 sð Þ þ 2 NaCl aqð Þ;

dn
dt

¼ SAk
� ð1� X0:5Þ2; ð12Þ

where SIcelestine ¼ log10X, SA [m2] is the reactive surface area

of Celestine and, k
� ¼ 5:1� 10�8 [mol m�2] according to

Marty et al. (2015)). Due to the micrometer resolution,
the reactive surface areas are directly available. Therefore,
the precipitation rate is defined locally, and is dependent
on the local conditions that apply exactly at each crystal-
fluid reactive interface. For the conditions of the experi-
ment, and for the resulting range of values of the saturation
index, the induction time for homogeneous nucleation is
infinitely long and only the heterogeneous nucleation is
favored.

The evolution of the system is dictated by the local sat-
uration index. The accurate prediction of the system evolu-
tion requires a full coupling between the flow and the
chemical speciation. The calculation of the chemical speci-
ation and of the local saturation index were integrated into
the flow solver in three main different ways.

First, we have embedded in the LB algorithm the exact
LMA solver, which provides accurate results for any com-
bination of the reactant concentrations. Second, we have
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created a lookup table using the same exact LMA solver,
with a concentration resolution in log units, for the master
species Sr2+ and SO4

2�, ranging from [0.00001, 0.1] M in 40
equidistant steps (in log units). The resulting SI, after the
calculation of the thermodynamic speciation was also
stored in the lookup table. During runtime, a linear interpo-
lation scheme was applied for the calculation of the approx-
imate values of SI. Third, we trained a NN using as training
input the aforementioned lookup table to allow a fair com-
parison between all methods. For the supervised learning,
the strontium and sulphur concentrations were the two-
dimensional input values, and SI was the output value.
Only 70% of the lookup table data were used in a random
way during the training process. The exact NN used is
schematically shown in Fig. 1. The trained NN was pro-
grammed as a function with two inputs and one output
and is provided in its benchmarking form in the supplemen-
tal material (file: nn8x8si.c). The performance of the NN
Fig. 6. First and second rows of plots shows the evolution of strontium
220 K timesteps correspond to DΤ = 10 sec of real experimental time. The
to celestine (SIcel ¼ log10XÞ. Numerical simulations can reveal informati
was quantified through the root of mean squared error
(RMSE) which had the value of RMSE = 6.64 * 10�5

(log10 units).
For the purpose of numerical benchmarking, the simula-

tions were initialized in the following way. First, the flow
field was let to approach stationary state as depicted in
Fig. 5, using the experimental snapshot at T = 560 min as
a starting geometry. Second, the solutes were allowed to
enter from the top and bottom left boundaries of the
domain, which then advect and diffuse along the streamli-
nes of the flow. Simulations run for 2.2 * 105 timesteps cor-
responding to a period Dt = 10 seconds of real experimental
time. At this timescale the reactants mix, mostly around the
central zone with the pillars, and when the solubility limit of
celestine is exceeded and after a short induction time (pro-
vided from the classical nucleation theory) the precipitation
is initiated. The sequence of the evolution of the concentra-
tion field and of the SI are shown in Fig. 6. The concentra-
and sulphur ion concentration for 5 K, 15 K and 220 K timesteps.
third row of plots shows the respective supersaturation with respect
on necessary for the interpretation of the experiments.
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tion field is asymmetric and the saturation index varies. The
precipitation zone, along the fluid-crystal interface, acts as a
sink of Sr2+ and SO4

2� ions. The competing transport and
reaction mechanisms result in a quasi-stationary state in
which, for the timeframe of DΤ = 10 seconds, the system
is reaching a constant global average saturation index,
and a constant global precipitation rate. The stationary
state is evolving at a relatively slow pace, along with the
overgrowth of the celestine crystals, which can in turn sub-
sequently affect the flow field. For the considered timeframe
of DT = 10 seconds the precipitated Celestine layers have a
thickness much less than 1 lm (sub-lattice) and therefore
the overgrowth is not significant to alter the flow field.

A comparison of the results of the simulations with the
different geochemical coupling implementations is shown in
Figs. 7–9. The exact LMA, the lookup table and the neural
network implementation produce practically similar results
and the differences for the quantities of interest are much
below the uncertainties of the thermodynamic parameters,
or the accuracy of the experimental measurement tech-
niques. In Fig. 7 (left), the results of the lattice Boltzmann
Fig. 7. Comparison of the evolution of the global saturation index (SI) fo
220 K timesteps (DΤ = 10sec). (left) Exact LMA, lookup table, NN (8x8 s
with each other. An incomplete trained NN is also shown in green color
218 K timestep. The NN is in closer agreement with the exact LMA, with
to colour in this figure legend, the reader is referred to the web version o

Fig. 8. Comparison of the different approaches for the full lattice Boltzma
(left) Total amount of Celestine precipitates in mol per litre. An incomple
regression in red color. (right) Global celestine precipitation rate per times
the references to colour in this figure legend, the reader is referred to the
cross-scale reactive transport simulations are shown for five
different implementations. The coupling with the LMA sol-
ver is represented by a black solid curve. The lookup table
implementation is shown with red squares, the result of
NN’s with blue circles (well trained network).

The results of an implementation of the same neural net-
work using a very small learning rate and intentionally
stopping before the training process is complete (insufficient
training) are shown in green color. This is done mainly to
demonstrate the importance of the learning process until
the necessary accuracy is reached. Unsatisfactory training
may result: when the selected knowledge base (training
dataset) is very large leading to unrealistic training times
followed by an early interruption of the learning process,
because of inappropriate parametrization of the learning
algorithm and activation functions, or due to overfitting.
Moreover, we have linearly regressed the SI manifold and
integrated the resulting function (plane) in the code. The
results of linear regression, are shown as a red continuous
line and as expected significantly deviate from the main
three methods.
r the transient lattice Boltzmann reactive transport simulation, for
tands for 2 hidden layers with 8 nodes each) are in close agreement
, and the result of linear regression in red color. (right) Zoom in at
a fourth decimal digit accuracy. (For interpretation of the references
f this article.)

nn reactive transport simulation, for 220 K timesteps (DΤ = 10 sec).
te trained NN is also shown in green color, and the result of linear
tep in moles within the microfluidic chamber. (For interpretation of
web version of this article.)
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The three main methodologies: exact LMA, lookup
table and neural network implementation, are in very good
agreement with each other. In Fig. 7 (right), the differences
of these three methods are highlighted for the quasi-
stationary state of T = 560 min + DΤ. The NN results are
in much better agreement with the exact LMA solver, com-
pared to the lookup table linear interpolation, and are able
to reproduce the exact results within the fourth decimal
digit. In Fig. 8 (left) the total amount of celestine precipi-
tates is plotted for the different cases, while in Fig. 8 (right)
the global precipitation rate per timestep is depicted. Con-
sidering computational efficiency, the exact LMA imple-
mentation had the slowest numerical performance, due to
the high computational costs of the speciation calculations.
The lookup table and the NN implementations were both
significantly faster. Finally, in Fig. 9 a comparison between
the exact LMA results and the result of the NN implemen-
tation shows the relative difference throughout the
microfluidic chamber. In Fig. 9 (left) the map of the relative
difference in percent for the local saturation index is shown.
For that, at every location of the domain the SI is calcu-
lated first for the exact LMA implementation, and then is
compared with the result of the well trained NN implemen-
tation. This highlights the excellent agreement and the accu-
racy of the NN implementation. The difference throughout
the simulations, and even after 220 K timesteps, remains at
very low levels and the system practically evolves in an
identical way. The wavy form of the contour plot can be
interpreted as the separation of regions of cumulative,
over-prediction and under-prediction of the NN
implementation.

A typical lattice Boltzmann code used for mass trans-
port simulations can perform for a single component simu-
lation around 5–10 million computational grid point
updates per second, (million lattice updates per second
MLUPS) on a single CPU core, or 400–1000 MLUPS on
a GP-GPU device (Tölke and Krafczyk, 2008; Krüger
et al., 2017; Safi et al., 2017a; Latt et al., 2020). A typical
geochemical speciation code like GEMS or PHREEQC
performs of the order of �1000 geochemical calculations
per second on a single CPU core (e.g Xeon E5-2650v4
Fig. 9. Relative difference maps between the embedded exact LMA so
difference in saturation ratio during the simulations remains throughout
220 K timesteps depicts regions of overprediction and underprediction. (ri
220 K timesteps remains also at very low levels.
2.2 GHz). Depending on the complexity of the chemical
system performance can be slightly lower or higher. In
the case of a direct coupling of the codes, for this reactive
transport problem, where 4 master species are considered
for advection and diffusion, the resulting code would spent
99.99% of the time for the geochemical speciation, since the
flow and mass transport calculation is three to four orders
of magnitude faster than the chemical reaction calculations.

The neural network used here, has a sustained through-
put performance of �13 million speciation calculations per
second, measured on the same CPU core as above, thus giv-
ing a speed-up of four orders of magnitude compared to the
geochemical speciation, with practically no loss in accuracy.
In this case, the chemistry is not anymore the bottleneck. A
C code that includes the neural network and the benchmark
computation with all necessary information about the com-
piler options used for the efficiency measurement, can be
found in the supplemental material (file: nn8x8si.c). This
extreme speedup highlights the potential of using surrogate
models and neural networks. We note that for more com-
plex chemical systems, with more dimensions, larger net-
works will be required, thus reducing the throughput
performance.

4. DISCUSSION

The physical and chemical processes observed in a typi-
cal experimental setup span over several length- and time-
scales, making multi-scale modelling indispensable. The
essence of the successful multiscale modelling approach is
the efficient transfer of the parameters between models
and codes operating at different scale. Such a granular
description of the system enables us to focus on scale speci-
fic processes with an appropriate modelling approach.

4.1. Neural network models for scale and physics couplings

It can be argued that neural networks are black boxes
without solid physical background to be applied for reac-
tive transport calculations. Indeed, the resulting network
in Fig. 1, cannot be rationalized in a simple hierarchy of
lver and the NN implementation after 220 K timesteps. (left) the
the domain at very low levels. The wavy form of the contour, after
ght) The difference in percent of volume occupancy (per voxel) after
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models describing individual physical processes. The result-
ing mathematical model is a collection of double precision
numbers, while the signal propagating between the input
and the output nodes is processed by a network of neurons
with a local short-range interaction. However, existing
multi scale modelling concepts often also lack closed-form
relationship between parameters that are obtained at differ-
ent scales. The transferred parameters are interpolated
using empirical polynomial relationships without a sound
physical meaning.

The use of Kozeny-Carman type porosity–permeability
correlations in reactive porous media, to upscale the result
of geochemical reactive flow from the pore-scale to the
Darcy-scale is a prominent example. Such relations seem
to work well for slow dissolution/precipitation processes
in a granular media with isomorphic shape of pores and
mineral grains. At the same time, such correlations fail by
several orders of magnitude to reproduce the system evolu-
tion in e.g. the case of fast calcite dissolution kinetics that
result in a wormhole dissolution pattern. The same holds
also in a scenario of mineral precipitation in porous media
(Poonoosamy et al., 2020), where the correlations of poros-
ity permeability deviate strongly from typical Kozeny-
Carman. For example, under specific conditions of strong
chemical gradients and fast reactions, a small change in
the volume of precipitates within the considered control
volume can result in strong reduction of the permeability
and effective diffusivity and even to clogging (Churakov
and Prasianakis, 2018). The example in Fig. 3 demonstrates
that the numerical dataset obtained by reactive pore scale
simulations, could not be accurately described by a single
closed form correlation (power law). The best-fit functional
form for the parameters correlations is a priori unknown,
and depends on the flow and reaction conditions. The pro-
cess of parameter fitting requires an educated guess of the
functional form or an iterative supervision and thus cannot
be easily automated or embedded in a multiscale algorithm.

Depending on the inflow velocity and the concentration
of reactants prescribed by Pe, Da and Re numbers, the
same geometry can follow a different permeability-
porosity trajectory. For example, there exist experimentally
and numerically produced phase diagrams of the different
calcite rock dissolution regimes (Starchenko and Ladd,
2018; Seigneur et al., 2019). All such trajectories create a
multi-dimensional permeability-porosity manifold where
the dimensions are the initial porosity and the three non-
dimensional numbers, which can eventually be represented
by a trained neural network.

We also note that information can certainly be
exchanged between codes and algorithms in a way similar
to the lookup table interpolation presented in the chemical
speciation example. Linear interpolation or spline interpo-
lation should work equally well in the calcite dissolution
example. However, such an approach cannot be generalized
efficiently in higher dimensions, especially when the grid
that is used for the interpolation is not regular/equidistant
(e.g. scattered data points), which can be well the case when
porosity–permeability relationship in the case of the afore-
mentioned multidimensional manifold. The neural network
models, on the other hand, have been successful in repre-
senting the arbitrary parameter dependencies and allow
implementation of an automated training process (Miller
et al., 1989; Yao, 1999).

4.2. Selection of optimum NN architecture, training and

accuracy of neural networks

A crucial and controversially debated issue is related to
the selection of the neural network topology and the NN
dimensions (e.g. the number of hidden layer and the num-
ber of neurons per layer). To keep the computational efforts
at minimum, both during the training and the use in numer-
ical simulations, the smallest possible network is desirable.
Depending on the application, the accuracy of shallow neu-
ral networks with few amount of neurons may be insuffi-
cient. Both shallow and deep neural networks are
universal approximators. In general, adding more layers
and neurons and moving from shallow NN to deep NN
improves the NN accuracy, but may also result in an over-
fitting (Mhaskar and Liao, 2016). Overfitting can be
addressed both by the training algorithms, as well as by
adjusting the number of neurons. This was also observed
in the case of the networks used for the acceleration of
the geochemical speciation calculation. The available
benchmarks suggest that the optimum network architecture
has to be devised on a case-by-case basis.

In general, the time needed for the training is increas-
ing with the number of nodes and layers and the amount
of data used for the training. For the first benchmark of
the upscaling of the geochemical reactions the full data
consisted only by 31 data samples, and one second of
training time was adequate. For the second example, rele-
vant to the geochemical speciation, where 1600 data sam-
ples served as the full data, one minute of training was
adequate to produce an accurate network. For more
demanding trainings, e.g. due to more input/output vari-
able, more hidden layers and neurons, the training can
take several hours on a single cpu-core or some minutes
in GPU/parallel setup.

A slightly more complex system is the system relevant to
calcite dolomite dissolution precipitation. To represent the
geochemical speciation a sample basis with primary vari-
ables the quantities of CaCO3 and MgCl2 in the range of
�8 to 0 (log10 mol/l) and CO2 in the range of �6 to �1.5
(log10 mol/l) as inputs, was created. The outputs of interest
were eleven, which are the aqueous species [Ca2+],
[CaOH+], [Mg2+], [MgOH+], [CO2s], [CO3

2�], [HCO3
�] in

(log10 mol/l), the pe, the pH, and the solid phases of calcite
and dolomite (log10 g/l). The generation of speciation data
were produced with the open software GEM-Selektor, and
were subsequently fed as training input for the neural net-
work. It was trained with a total of 2890 datapoints, which
spans a very coarse grid with a step size of 0.5 units in log10
space per input component. The neural network of Fig. 10
has 6 hidden layers with 14 neurons each. For a multidi-
mensional output, the mean squared error loss function
(Eq. (7)) is adapted to:

L ¼ 1

nd

Xd

j¼1

Xn

i¼1

ðti;j � yi;jÞ2; ð13Þ



Fig. 10. Visualization of the feedforward network used for the system with calcite and dolomite precipitation. It has six hidden layers with
fourteen neurons per layer. The NN takes three components (C1–C3) as input and predicts eleven outputs (Y1–Y11).
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where d is the dimension of the output. The network
obtained a RMSE = 6.111 * 10�3. This accuracy has to be
interpreted as the accuracy of the network to the knowledge
that it was exposed. The obviously coarse grid that was
used can only give a coarse representation of the underlying
physics. For example when the network accuracy is tested
on a much finer grid, its RMSE on the finer dataset is
increased by two orders of magnitude. For a ten times finer
grid with step size 0.05 units in log10 space, instead of 0.5
step size, the RMSE will be just 0.1095. When the NN is
subsequently trained on the new knowledge (0.05 units in
log10 space), its new RMSE for the new data reduces again
to low levels. This process can go on, until the network
becomes insensitive to finer resolutions. In this case the net-
work converges to the behavior of the underlying physics as
done in the case of the network used in Section 3.2. The
network of Section 3.2 was trained using 70% of the 1600
samples of the lookup table and has an RMSE1600 =
6.64 * 10�5, tested on the input data. To observe conver-
gence to the underlying physics we have generated three
independent data sets with 160000, 1600000 and 15 Million
random input data samples. The resulting errors relevant
to the exact-LMA data were: RMSE16K = 7.1857 * 10�5,
RMSE160K = 7.4027 * 10�5, RMSE15M = 7.45877 * 10�5,
showing a clear convergence to very low levels of error.

A network of the size shown in Fig. 10 still has a
throughput efficiency of 1–2 million speciation calculations
per second on a single CPU core (see supplementary mate-
rial file: calcite.c) , while the geochemical solver for this
problem produces results at a pace of 300 speciation calcu-
lations per second.

Finally, it is noted that a NN is applicable for the speci-
fic problem, which was used to provide the training basis.
Changes in the system (e.g. a new input component)
requires a new training of the network. However, once
the NN is trained at satisfactory accuracy, it can be re-
used for several applications and simulations. When the
NN is not part of the pre-processing for a simulation, spe-
cial care has to be taken for its quality assurance. For
example a database composed of such NNs should also
store the specifications of the chemical system, the exact
version of the geochemical solver that was used to generate
it and the relevant input.

4.3. Computational efficiency

The main motivation for using surrogate models is the
expected increase in computational efficiency. A surrogate
model can express the complex correlations between input
and output data, without the need for a description of
underlying physical mechanisms. On the other hand, for a
single speciation calculation the geochemical algorithms
have to find solutions in an iterative way until convergence.
The number of iterations depends on the complexity of the
system as well as on the relevant species concentrations.
For a reactive transport code, the geochemistry is usually
the bottleneck in terms of computational efficiency. In par-
allel reactive transport simulations, the geochemical specia-
tion calculations are usually accomplished in parallel too.
The convergence rate and the wall-clock time per geochem-
ical speciation calculation with LMA or GEMs codes
depend strongly (by several orders of magnitude) on the
system composition. Such a variable performance raise a
serious node balancing issue in massive parallel computing,
and penalizes the performance of coupled reactive transport
simulations. In contrast, neural networks always need the
same number of floating point operations per speciation
calculation, thus providing an excellent condition for
CPU-cores balancing in parallel simulations.

Through the example of Section 3.2, it has been demon-
strated that a relatively small NN can provide excellent
accuracy in a wide range of system compositions even after
several hundreds of thousands of timesteps, which excludes
the presence of systematic errors (Figs. 7–9). Another out-
come of this study is the tradeoff of accuracy, robustness,
compactness between the approaches using lookup tables
and NN. For a low dimensional variable space with a lim-
ited range of parameters variability, the lookup table
approach is preferred. A lookup table is straightforward
to produce and to embed into a code as well. However,
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for high dimensional problems with large parameter varia-
tions, the lookup table becomes impractical due to an expo-
nential growth of the memory demand. For example, a
lookup table with only 2 species, when represented on a
40 by 40 mesh, contains 1600 rows. A look up table with
6 species and same accuracy is consisted by more than four
billion rows, posing severe memory and access time require-
ments. A NN has the potential to handle such a system with
much lower computational and computer memory foot-
print, since fewer variables are needed to describe a neural
network. Obviously, the training of such a network up to
the desired accuracy is a very challenging task. The training
of a NN at larger dimensions cannot be based on regular
equidistant grids of the input variables since the sample
basis would then be enormous. A possible approach would
be to scan the multidimensional space in a probabilistic way
for interesting regions and to locally refine the number of
grid points.

Particularly promising is also the dynamic training of
the NNs during the reactive transport simulation, which
can be done in combination with full geochemical specia-
tion solvers. On-the-fly trained NNs can be used to progres-
sively accelerate the geochemical calculations by providing
improved initial guesses for the chemical speciation calcula-
tions and eventually replace the chemical solver at the
advanced simulation stage (Guérillot and Bruyelle, 2020).
Once trained, the NN along with its specifications could
be also deposited in an open database for further use from
the scientific community. To this aim, the NN training
packages could be interfaced with geochemical speciation
codes and deliver the trained NNs as an externally linkable
library for reactive transport simulation via a unified
interface.

4.4. Significance of coupled reactive transport in geochemical

applications and development of digital twins

Transient phenomena in complex multicomponent natu-
ral systems are particularly sensitive to the details of the
process couplings (Steefel et al., 2005). The next challenge
in coupled description of reactive transport processes at
pore and continuum scale, is to consider the realistic
description of heterogeneities in 3D. One of the major
obstacles for the consideration of realistic geometries is
the high computational overhead of the full speciation
chemical solvers. A neural network based description of
chemical equilibria seems at the moment to be an efficient
and practical approach, enabling to address transient phe-
nomena in high resolution 3D reactive transport simula-
tions. For natural multicomponent systems, a more
detailed analysis of the geochemistry may allow the identi-
fication of key processes controlling the system behavior.
Such simulations are necessary for the accurate estimation
of the critical time scales and the reaction pathways, for
geochemical phenomena in natural and geo-engineered sys-
tems with strong geochemical gradients and non-linear cou-
pling between chemical reactivity (ionic strength, pH,
concentration of dominant species and solubility indexes
of key mineral phases), transport (porosity permeability dif-
fusivity relationships) and heat transfer phenomena. Such
systems include natural and engineered geothermal systems,
carbon capture and storage, or disposal of nuclear waste.

Modern most advanced geochemical studies of fluid-
mineral interaction show clear trends towards miniaturiza-
tion of the experimental setup, process coupling and high
resolution, often with in situ time resolved characterization
of the processes. Such experiments deliver the data at an
unprecedented level of detail and level of process complex-
ity. Interpretation of the results require, however, full con-
trol on the experimental boundary condition and the
process design. The accelerated multiscale reactive trans-
port simulations offer a unique opportunity for the design,
optimization, monitoring and eventually the active steering
of miniaturized reactive transport experiments. A NN
based digital twin of the experiment along with the aug-
mented reality capabilities it offers (in-situ determination
and prediction of chemical and flow conditions), will soon
be an indispensable supplementary tool for the implementa-
tion of experimental high resolution reactive transport stud-
ies. Assuming that the geochemical speciation calculation is
no more the computational bottleneck of the reactive trans-
port modelling, it will be feasible to achieve real time simu-
lation of the experimental conditions.

5. CONCLUSION

In this paper, we explore and benchmark the efficiency
of NN framework to enhance reactive transport modelling.
The selected applications are relevant to multiscale multi-
physics modelling. The examples suggest that NNs can
interface different codes that operate at a different length
and time scale. For the reactive transport simulation, rele-
vant to a lab-on-a-chip microfluidic experiment, the agree-
ment between the NN implementation and the exact LMA
solver for the calculation of the chemical speciation was
excellent, with the NN performance being four orders of
magnitude faster. The dynamic equilibrium of the system
was controlled by advection, diffusion and mineral precipi-
tation processes. The accuracy remained at high levels even
after numerous computational time steps, despite the com-
plexity of the involved mechanisms.

The NN clearly over perform full speciation reactive
transport simulations and look-up table based approaches
in terms of computational efficiency and memory demands.
This performance comes at a price. Particular care has to be
taken for the appropriate training of NN. Insufficient train-
ing or limited size of the training dataset in terms of the
data volume and the coverage of the space of variables,
may result in very poor accuracy of the NN.

Access to accurate and numerically efficient NNs opens
horizons for large-scale 3D reactive transport simulations
of complex natural systems, and further development of
digital twins indispensable for experimental high resolution
reactive transport studies. The success of such applications
will depend very much on the efficiency and automation of
NN training process for arbitrary problems.
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Bosbach D., Mäder U. and Kosakowski G. (2020) Effects of
solution supersaturation on barite precipitation in porous
media and consequences on permeability, Experiments and
modelling. Geochimica et Cosmochimica Acta 270, 43–60.

Poonoosamy J., Westerwalbesloh C., Deissmann G., Mahrous M.,
Curti E., Churakov S. V., Klinkenberg M., Kohlheyer D., von
Lieres E., Bosbach D. and Prasianakis N. I. (2019) A
microfluidic experiment and pore scale modelling diagnostics
for assessing mineral precipitation and dissolution in confined
spaces. Chem. Geol. 528.

Portier, S., Vuataz, F.-D., Nami, P., Sanjuan, B., Gérard, A., 2009.
Chemical stimulation techniques for geothermal wells: experi-
ments on the three-well EGS system at Soultz-sous-Forêts,
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