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ABSTRACT 

 

In this paper, two main exercises have been carried out to describe the effect that varying an 

albedo boundary condition has in the computation of observables such as decay heat, neutron 

emission rate and nuclide inventory from a PWR fuel assembly (or a configuration of 

assemblies) during a depletion scenario. The SERPENT2 code was then employed to 

emphasize the importance of modeling a proper boundary condition for such purposes. 

Moreover, the effect of taking into account more than a single fuel-pin region for depletion 

studies while varying the type of boundary condition, was also accounted for. The first exercise 

has the main objective of comparing in a single fuel assembly the albedo variations ranging 

from 1.1 up to full vacuum conditions. By comparing to the reference assembly (considered 

to be the case of full reflective conditions), relative differences up to +17% were observed in 

decay heat and up to almost -30% in neutron emissions. Also, a clear dependence on the albedo 

was detected if more than one depletable zone was considered while computing the integral 

value of observables of interest. Regarding the second exercise, where a 3 × 3 configuration 

of fuel assemblies is being now considered with a reflector section in the middle, a negligible 

effect on the observables was observed for the single fuel pin zone case; instead, an effect in 

the 244Cm computation when analyzing two fuel pin-zones produced a change in the neutron 

emission rate during cooling time up to 2.5% (while comparing it to the reference single 

assembly case).   
 
KEYWORDS: albedo sensitivity, neutron emission rate, isotopic inventory, decay heat, PWR assembly 

depletion  
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1. INTRODUCTION 

 

Nowadays, computer codes are widely used for the determination of spent fuel nuclide inventory, decay 

heat, fuel loading analysis of nuclear reactors, among other studies [1-3]. For example, depletion 

calculations of Light Water Reactors (LWR’s) that have been used for the aforementioned purposes with 

large scale models (e.g. full core or core symmetric-quarter) had been mostly based on the so-called “two-

step” approach, where a set of few-group homogenized cross-sections (usually at the assembly level) are 

set to form a core model in order to feed a simulator that would solve the diffusion-Bateman equations [4-

5]. Meanwhile, modern simulation efforts for depletion analyses are being based on high-fidelity multi-

physics and multi-scale approaches by solving the transport equation relying on state-of-the-art numerical 

methods [6]. Nevertheless, it is nowadays still customary to carry out such type of studies at lower scales 

than the core level (e.g. at the assembly level or a group of assemblies sharing similar characteristics such 

as fuel batches), in order to find a good compromise between the computational costs in time and power 

that an accurate computation of the observables of interest would require. When this holds true, the use of 

appropriate boundary conditions becomes necessary in the modeling strategy, with the intention to properly 

emulate the environmental effects that the neutron flux would otherwise encounter in a large scale system.   

 

The constraint in defining a certain type of boundary condition might have an impact in the assessment of 

observables of interest as a function of burnup. For instance, the use of reflective boundary conditions along 

all directions assumes a physical modeling corresponding “to an infinite system”, which might be correct 

if the surrounding media is composed by the same geometrical and material characteristics for several 

neutron mean free paths from the domain boundaries. On the other hand, albedo (𝛽) boundary conditions 

are commonly applied when a change of environment is expected to take place, producing a high net neutron 

current with the eventual shift of the energy-spectra (i.e. around reflectors or strong absorbers like control 

rods). It is actually common to find this strategy along in-core fuel management depletion calculations of 

commercial reactors in well stablished codes like CASMO-SIMULATE [7] and PHOENIX-POLCA [8], 

where instead of defining a macroscopic cross-section region of non-fissile materials such as axial and 

radial reflectors, a two-group albedo boundary condition is used instead for the solution of the nodal two-

group diffusion equation [7-8].  

 

In this paper, the study of the impact that changing the surroundings of either a single fuel assembly (by 

means of changing the albedo) or, on the other hand, the impact that changing the surroundings of a fuel 

assembly batch group (by imposing a reflector in the middle of the configuration) has on the prediction of 

the decay heat, nuclide inventory, and neutron emission rates, was performed along a hypothetical scenario 

consisting of 4 cycles with a final 5 year cooling period of time. This parametric study was carried out 

solely with the SERPENT2 code [9], and one of the main objectives is to assess the relative variation that 

exist between such depleted observables with respect to other ones that have been previously computed 

from an assembly modeled with full-reflective boundary conditions (i.e. albedo equal to unity), and that 

was ran for the same cycle scenario [3]. Moreover, another important objective of this work is to verify if 

by considering all possible materials that contain the same type of fuel as a single “burnable” region, the 

computation of the addition of the aforementioned observables of interest differ too much (due to the change 

of albedo or type of boundary), from the case where separate “burnable” regions containing fuel pins of the 

same type where instead consider for the integral computation of the results.  

 

2. DESCRITPTION OF THE MODELING EXCERSICES  

 

A reference 2D model from a previous benchmark study conducted by the authors [3] is being referenced 

for this work. It conveys a typical 17 × 17 PWR assembly with reflective boundary conditions, assuming a 

Zircaloy-4 cladding and a 4 w/o UOX fuel that is irradiated along 4 cycles of 300 days each, with interim 

cooling periods of 30 days. At the end of the 51000 MWd/tHM burnout, a final 1-1000 year period cooling 

of time is taken into account. Table I below summarizes all important characteristics of the model. The only 
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notable difference from the reference model in Ref. [3] is a change of moderator/coolant temperature from 

600 K to 580 K and the corresponding change of water density to provide more realistic irradiation 

conditions of a typical PWR assembly. 

 

Table I. Model characteristics in SERPENT2 

 

Power [each cycle] Constant levels of 50, 50, 40 and 30 MW/tHM 

Density [g/cm3] Fuel 10.4 

Moderator/Coolant (with constant boron 

level of 800 ppm) 

0.655 

Temperature [K] Fuel 900 

Cladding 600 

Moderator/Coolant 580 

Geometrical dimensions [mm] Fuel pellet radius 4.095 

Cladding (inner/outer) radiuses 4.18/4.75 

Pin pitch 12.6 

Cycle time steps [days] 1, 10, 14, 3 × 25 and 4 × 50 

Nuclear data library  ENDF/B-VII.1 [10] 

Radial zones per pin during depletion  4 

 

2.1. Model for the albedo sensitivity studies  

 

To fulfill the exercise 1 of this work, a single fuel assembly is enough. The aim is to vary the albedo 

boundary conditions ranging from an over-reflective case (𝛽 = 1.1), passing by the reference full-reflective 

case (𝛽 = 1) and ending up at full-vacuum boundary (𝛽 = 0) in order to compare the behaviour of the 

observables, both of these are computed assuming only one fuel material region to be depleted (see Figure 

1a) as well as with four different regions (as highlighted in Figure 1b. The first zone in blue at the periphery; 

the second region at the corners; the third region around the control/instrumentation tubes; and the fourth 

region elsewhere). It has to be remarked that in both cases, each pin is radially meshed four times. In the 

end, the effect of having a separate pin treatment in a fuel assembly for catching albedo dependencies in 

the assessment of observables as a function of time is the objective of the exercise.  

 

 
Figure 1. a) Assembly with one depletion zone; b) Assembly with four depletion zones (albedo 

study). 
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2.2. Model for the reflector analysis  

 
A more realistic way of modeling a true albedo would be to actually include a reflector zone in the domain 

of study. In this exercise, a 3 × 3 fuel assembly configuration is used, with the exception that the central 

assembly is replaced with a reflector zone formed by a heterogeneous configuration of steel and water. Fuel 

assemblies have the same characteristics as in exercise 1. This type of modeling was divided in two parts: 

one corresponding to fuel assemblies with one “burnable” region, and a second one where the corner 

assemblies are considered a separate “burnable” region from the rest of the assemblies. This can be 

appreciated in Figure 2a and 2b, respectively. In Figure 2  the black zone corresponds to the type of stainless 

steel (SS-304), while the blue part is being filled with regular coolant.  

 

The objective of this exercise 2 is two-fold. Firstly, to study the impact of a reflector zone on decay heat, 

nuclide vector and neutron emission rate compared to the reference case of full-reflective conditions from 

exercise 1. And secondly to study the effect of modeling more than one “burnable” region on previous 

comparison.  

 

 
Figure 2. a) 3 × 3 configuration with one depletion zone; b) 3 × 3 configuration with two depletion 

zones (reflector study). 

 

3. RESULTS 

 

3.1 Albedo sensitivity studies 

 
The computation of decay heat and neutron emission rates are based on the methodology from Ref. [3]. 

The results for exercise 1 are subdivided into two different set of figures. On one hand, depletion 

observables as a function of time for different albedos (which range from 0 to 1.1) when only one fuel-pin 

zone is considered are shown in Figures 3 to 6. Decay heat and neutron emission rates are only depicted 

during cooling times, while for the behavior of some nuclides such as 241Am and 244Cm, the full irradiation 

plus cooling time is being accounted for. This analysis also describes the relative difference that such 

parameters display for different albedos with respect to the reference case of albedo equaling to unity.  
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On the other hand, the second set of Figures (comprised between Figure 7 and 10) shows 3D plots, 

displaying the relative differences between the assemblies with one fuel pin zone with respect to the 

assembly with four fuel pin zones at different albedos. To outline the impact of employing either one or 

four “burnable” regions on the computation of observables of interest at a certain time, it was decided to 

show the decay heat and neutron emission rates trends as a function of albedo after exactly 5 years of 

cooling for both cases. Meanwhile, the same type of study was performed for prediction of 241Am and 244Cm 

masses at the end of irradiation.   

 

 
 

Figure 3. Decay heat rate as a function of cooling time for different albedo boundary conditions. 

 

 

 

Figure 4. Neutron emission rate as a function of cooling time for different albedo boundary 

conditions. 

 

 
 

 

Figure 5. 241Am mass as a function of irradiation + subsequent cooling time for different albedo 

boundary conditions. 
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Figure 6. 244Cm mass as a function of irradiation + subsequent cooling time for different albedo 

boundary conditions. 

 

 

 
Figure 7. Differences in decay heat rate between 1 region and 4 region cases as a function of albedo 

and cooling time. 

 

 

 
 
Figure 8. Differences in neutron emission rate between 1 region and 4 region cases as a function of 

albedo and cooling time. 
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Figure 9. Differences in 241Am concentration between 1 region and 4 region cases as a function of 

albedo and irradiation + subsequent cooling time. 

 

 

 
 

Figure 10. Differences in 244Cm concentration between 1 region and 4 region cases as a function of 

albedo and irradiation + subsequent cooling time. 

 

For the albedo sensitivity studies in a single assembly, the following can be concluded for each computed 

parameter: 

 

 Decay heat is sensitive to albedo changes consistently from the reflective reference, specifically 

after 50 years of cooling time. For albedos lower than unity and after 100 years of cooling, decay 

heat relative differences increase and stabilize accordingly to the albedo reduction with a greatest 

value of +17%. For albedos greater than unity, the opposite effect is observed; decay heat decreases 

and stabilizes at a maximum relative difference of about -6%. 

 

 The opposite effect is observed while studying the neutron emission per unit time. Consistently, 

the lower the albedo, the greater minimum difference is observed with respect to the reference case 

(e.g. up to almost -30% for the vacuum boundary condition case). On the other hand, computations 

for emission rates corresponding to albedos of 90% or 110% are within -5% and +5%, respectively, 

from the reference case. 

 

 At the beginning of irradiation, the prediction of 241Am concentration relative to the reference case 

varies between -10% and +15%. At the end of irradiation, such relative difference tends to stabilize 

as 241Am is being build up in the fuel. A sudden peak (up to +35% difference) and stabilization 

takes place during cooling time until the end of the study. Accordingly, the lower the albedo, the 

greater the relative difference in its final prediction is being observed.  
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 The 244Cm case ranges from almost +15% to just below -10% at the beginning of irradiation, 

following a steady-increase until stabilization at the end of irradiation and beginning of cooling 

time. Accordingly, and inversely proportional to the decrease of albedo, the maximum final relative 

difference is about -30% for the black (vacuum) boundary case.   

 

Regarding the study between a single and four depletable regions, it is clear that the lower the albedo is 

from the reflective case, the more divergent the computation of the observables becomes. Thus, a high 

impact is observed, with an under-estimation for low albedos if a single zone is used compared to four 

regions (except for the case of 241Am, where an over-estimation was observed instead).  

 

 

3.2 Reflector configuration results 

 
In this section, results of observables per tHM for different reflector configurations (one or two fuel-pin 

regions) are being compared to calculations from the reference fuel assembly (i.e. 𝛽 = 1 and one fuel-pin 

zone). By following the same trend of describing results from the previous exercise,  Figures 11 to 14 depict 

the difference (both in absolute and relative terms) between decay heat and neutron emission rate during 

cooling time, as well as for normalized 241Am and 244Cm masses along the complete time of the scenario.  

 

In general, it can be said that no significant impact is observed when a single or two regions are considered 

in a configuration with a central reflector area for decay heat computations. However a significant impact 

is observed in the computation of the neutron emission rate (it goes up to 2.5 times higher compared to the 

nominal case). This is caused mainly by curium concentrations around the different zone averages (in 

Figure 14, the 244Cm calculation at the beginning of irradiation is up to 10% different than the nominal 

model). Thus, it can be said that neutron source is more dependent on the reflector boundary compared to 

decay heat, due to influence of neutron spectra on the production of higher actinides.  

 

 
 

Figure 11. Decay heat rate as a function of cooling time for different assembly configurations with 

respect to the reflector. 
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Figure 12. Neutron emission rate as a function of cooling time for different assembly configurations 

with respect to the reflector. 

 

 
 

Figure 13. 241Am mass as a function of irradiation + subsequent cooling time for different assembly 

configurations with respect to the reflector.  

 

 

 
 

Figure 14. 244Cm masses as a function of irradiation + subsequent cooling time for different 

assembly configurations with respect to the reflector.  

 

4. CONCLUSIONS 

 
This paper described in two different exercises, the effect that the quantitative albedo has in depletion 

calculations from different PWR-type assembly configurations. It shows that the neutron emission rate is 

more sensitive to albedo changes in a single fuel assembly than decay heat (i.e. -30% vs. +17% in relative 

difference, respectively). Likewise, 244Cm production is more sensitive than 241Am within this framework 

at the cooling time of 100 years (+17% vs. -30%, respectively), except at the end of irradiation where 241Am 

exhibits a peak up to +38% relative difference from the nominal scenario. Moreover, it is clear that at low 
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albedos, for an accurate computation of integral depletion observables several fuel-pin depletion regions 

need to be considered (four in this work).  

 

Regarding the assessment of having a reflector inside a 3 × 3 fuel assembly configuration, the relative 

change in output observables normalized to tHM and compared to the reference assembly is negligible. On 

the other hand, an effect was in fact noted when different depletable zones were being considered in the 

study; then, the accumulation of actinides like 244Cm makes the neutron source more dependent on the type 

of boundary condition (a relative difference at some point during cooling time of up to 2.5% was observed 

for this particular case).  
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